BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17070766)

  • 21. Hypothesis: chronic fatigue syndrome is caused by dysregulation of hydrogen sulfide metabolism.
    Lemle MD
    Med Hypotheses; 2009 Jan; 72(1):108-9. PubMed ID: 18799269
    [No Abstract]   [Full Text] [Related]  

  • 22. Targeting of liposomes containing methotrexate towards Tetrahymena pyriformis cells.
    Kotsifaki H; Kapoulas V; Deliconstantinos G
    Gen Pharmacol; 1985; 16(6):573-7. PubMed ID: 3936748
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A specific uncoupler-binding protein in Tetrahymena pyriformis and Paracoccus denitrificans.
    Katre NV; Wilson DF
    Biochim Biophys Acta; 1980 Dec; 593(2):224-9. PubMed ID: 6263320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ca2+ transport in mitochondria of the ciliate protozoan Tetrahymena pyriformis.
    Kim JV; Kudzina LJ; Zinchenko VP; Evtodienko JV
    Cell Calcium; 1984 Feb; 5(1):29-41. PubMed ID: 6201283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cytotoxicity assessment of three therapeutic agents, cyclosporin-A, cisplatin and doxorubicin, with the ciliated protozoan Tetrahymena pyriformis.
    Bonnet JL; Dusser M; Bohatier J; Laffosse J
    Res Microbiol; 2003 Jun; 154(5):375-85. PubMed ID: 12837514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effect of tox enzymes on phagocytosis ability, ciliary movement and metabolism of Tetrahymena pyriformis].
    Burmeister J
    Z Allg Mikrobiol; 1974; 14(6):479-85. PubMed ID: 4218412
    [No Abstract]   [Full Text] [Related]  

  • 27. [A cytophotometric study of the influence exerted by epidermal growth factor on RNA and protein synthesis in the ciliate Tetrahymena pyriformis].
    Shemarova IV; Selivanova GV; Vlasova TD
    Tsitologiia; 2004; 46(11):993-5. PubMed ID: 15704880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of hypolipidemic agents on lipid synthesis in subcellular fractions from Tetrahymena pyriformis.
    Pan HY; Chou SC; Conklin KA
    Pharmacology; 1976; 14(6):499-510. PubMed ID: 14346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for endosymbiosis: interaction between Tetrahymena pyriformis and Escherichia coli.
    Siegmund L; Burmester A; Fischer MS; Wöstemeyer J
    Eur J Protistol; 2013 Nov; 49(4):552-63. PubMed ID: 23763905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance.
    Cooper CE; Brown GC
    J Bioenerg Biomembr; 2008 Oct; 40(5):533-9. PubMed ID: 18839291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis.
    Bonnet JL; Bonnemoy F; Dusser M; Bohatier J
    Environ Toxicol; 2007 Feb; 22(1):78-91. PubMed ID: 17295264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sulfide consumption by mussel gill mitochondria is not strictly tied to oxygen reduction: measurements using a novel polarographic sulfide sensor.
    Kraus DW; Doeller JE
    J Exp Biol; 2004 Oct; 207(Pt 21):3667-79. PubMed ID: 15371475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study on the effects of 2,4-dinitrophenol and arsenate on the proliferation and respiration of Tetrahymena pyriformis.
    Kuroda T
    Tokushima J Exp Med; 1977 Dec; 24(3-4):155-64. PubMed ID: 418526
    [No Abstract]   [Full Text] [Related]  

  • 34. Some effects of chloramphenicol and ethidium bromide on Tetrahymena pyriformis.
    Rohatgi K; Krawiec S
    J Protozool; 1973 Aug; 20(3):425-30. PubMed ID: 4354402
    [No Abstract]   [Full Text] [Related]  

  • 35. Cytotoxicity and oxidative stress caused by chemicals adsorbed on particulate matter.
    Müller A; Wichmann G; Massolo L; Rehwagen M; Gräbsch C; Loffhagen N; Herbarth O; Ronco A
    Environ Toxicol; 2006 Oct; 21(5):457-63. PubMed ID: 16944505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondria of Tetrahymena pyriformis: enumeration and sizing of isolated organelles using a Coulter Counter and pulse-height analyser.
    Poole RK
    J Cell Sci; 1983 May; 61():437-51. PubMed ID: 6411751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The vertebrate homolog of sulfide-quinone reductase is expressed in mitochondria of neuronal tissues.
    Ackermann M; Kubitza M; Maier K; Brawanski A; Hauska G; Piña AL
    Neuroscience; 2011 Dec; 199():1-12. PubMed ID: 22067608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide.
    Leschelle X; Goubern M; Andriamihaja M; Blottière HM; Couplan E; Gonzalez-Barroso MD; Petit C; Pagniez A; Chaumontet C; Mignotte B; Bouillaud F; Blachier F
    Biochim Biophys Acta; 2005 Sep; 1725(2):201-12. PubMed ID: 15996823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of the mechanism of the cytostatic effect of picolinic acid on proliferating Tetrahymena pyriformis cells.
    Shemarova IV; Korotkov SM; Nosova IY
    Dokl Biol Sci; 2003; 391():299-302. PubMed ID: 14556515
    [No Abstract]   [Full Text] [Related]  

  • 40. The role of glucolipid in the biosynthesis of glycoprotein in Tetrahymena pyriformis.
    Keenan RW; Kruczek M; Fusinato L
    Arch Biochem Biophys; 1975 Apr; 167(2):697-705. PubMed ID: 804862
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.