These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17070817)

  • 1. A non-invasive protocol to determine the personalized moment arms of knee and ankle muscles.
    Bonnefoy A; Doriot N; Senk M; Dohin B; Pradon D; Chèze L
    J Biomech; 2007; 40(8):1776-85. PubMed ID: 17070817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability.
    Pal S; Langenderfer JE; Stowe JQ; Laz PJ; Petrella AJ; Rullkoetter PJ
    Ann Biomed Eng; 2007 Sep; 35(9):1632-42. PubMed ID: 17546504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements.
    Sheets AL; Corazza S; Andriacchi TP
    J Biomech Eng; 2010 Jan; 132(1):011004. PubMed ID: 20524742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Joint kinetics during Tai Chi gait and normal walking gait in young and elderly Tai Chi Chuan practitioners.
    Wu G; Millon D
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):787-95. PubMed ID: 18342415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for measuring passive length-tension properties of human gastrocnemius muscle in vivo.
    Hoang PD; Gorman RB; Todd G; Gandevia SC; Herbert RD
    J Biomech; 2005 Jun; 38(6):1333-41. PubMed ID: 15863118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.
    Bieryla KA; Anderson DE; Madigan ML
    J Electromyogr Kinesiol; 2009 Feb; 19(1):139-44. PubMed ID: 17720539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of intrinsic-extrinsic muscle function through interactive 3-dimensional kinematic simulation and cadaver studies.
    Buford WL; Koh S; Andersen CR; Viegas SF
    J Hand Surg Am; 2005 Nov; 30(6):1267-75. PubMed ID: 16344187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moment arm of the patellar tendon in the human knee.
    Krevolin JL; Pandy MG; Pearce JC
    J Biomech; 2004 May; 37(5):785-8. PubMed ID: 15047009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How changing the inversion/eversion foot angle affects the nondriving intersegmental knee moments and the relative activation of the vastii muscles in cycling.
    Gregersen CS; Hull ML; Hakansson NA
    J Biomech Eng; 2006 Jun; 128(3):391-8. PubMed ID: 16706588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes.
    Lewis GS; Sommer HJ; Piazza SJ
    J Biomech Eng; 2006 Aug; 128(4):596-603. PubMed ID: 16813451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeatability of an optimised lower body model.
    Charlton IW; Tate P; Smyth P; Roren L
    Gait Posture; 2004 Oct; 20(2):213-21. PubMed ID: 15336293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active muscle torques about long-bone axes of major human joints.
    Engin AE; Kaleps I
    Aviat Space Environ Med; 1980 Jun; 51(6):551-5. PubMed ID: 7417114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting changes in knee adduction moment due to load-altering interventions from pressure distribution at the foot in healthy subjects.
    Erhart JC; Mündermann A; Mündermann L; Andriacchi TP
    J Biomech; 2008 Oct; 41(14):2989-94. PubMed ID: 18771767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of altering neural, muscular and tendinous factors associated with aging on balance recovery using the ankle strategy: a simulation study.
    Barrett RS; Lichtwark GA
    J Theor Biol; 2008 Oct; 254(3):546-54. PubMed ID: 18639557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal plane moments do not accurately reflect ankle dynamics during running.
    O'Connor KM; Hamill J
    J Appl Biomech; 2005 Feb; 21(1):85-95. PubMed ID: 16131707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of different inertial parameter sets on joint moment calculation during stair ascending and descending.
    Fantozzi S; Stagni R; Cappello A; Leardini A
    Med Eng Phys; 2005 Jul; 27(6):537-41. PubMed ID: 15990070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of adding trunk motion to the interpretation of the role of joint moments during normal walking.
    Patel M; Talaty M; Ounpuu S
    J Biomech; 2007; 40(16):3563-9. PubMed ID: 17765906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locomotor advantages of Neandertal skeletal morphology at the knee and ankle.
    Miller JA; Gross MM
    J Biomech; 1998 Apr; 31(4):355-61. PubMed ID: 9672089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.