These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
26. MAPK's networks and their capacity for multistationarity due to toric steady states. Pérez Millán M; Turjanski AG Math Biosci; 2015 Apr; 262():125-37. PubMed ID: 25640872 [TBL] [Abstract][Full Text] [Related]
27. A logical (discrete) formulation for the storage and recall of environmental signals in plants. Thellier M; Demongeot J; Norris V; Guespin J; Ripoll C; Thomas R Plant Biol (Stuttg); 2004 Sep; 6(5):590-7. PubMed ID: 15375730 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of receptor and protein transducer homodimerisation. Vera J; Millat T; Kolch W; Wolkenhauer O BMC Syst Biol; 2008 Oct; 2():92. PubMed ID: 18976473 [TBL] [Abstract][Full Text] [Related]
29. Partial equilibrium approximations in apoptosis. I. The intracellular-signaling subsystem. Huang YJ; Yong WA Math Biosci; 2013 Nov; 246(1):27-37. PubMed ID: 24075944 [TBL] [Abstract][Full Text] [Related]
30. Mathematical modelling and analysis of cellular signalling in macrophages. Callender HL; Ann Horn M J Biol Dyn; 2010 Jan; 4(1):12-27. PubMed ID: 22881068 [TBL] [Abstract][Full Text] [Related]
31. Perspectives of mathematical modelling for understanding of intracellular signalling and vesicular trafficking in macrophages. Kzhyshkowska J; Marciniak-Czochra A; Gratchev A Immunobiology; 2007; 212(9-10):813-25. PubMed ID: 18086381 [TBL] [Abstract][Full Text] [Related]
32. Effects of saturation and enzyme limitation in feedforward adaptive signal transduction. Krishnan J IET Syst Biol; 2011 May; 5(3):208-19. PubMed ID: 21639593 [TBL] [Abstract][Full Text] [Related]
33. A control theoretic paradigm for cell signaling networks: a simple complexity for a sensitive robustness. Araujo RP; Liotta LA Curr Opin Chem Biol; 2006 Feb; 10(1):81-7. PubMed ID: 16414304 [TBL] [Abstract][Full Text] [Related]
34. Analytical solution of steady-state equations for chemical reaction networks with bilinear rate laws. Halász AM; Lai HJ; McCabe Pryor M; Radhakrishnan K; Edwards JS IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):957-69. PubMed ID: 24334389 [TBL] [Abstract][Full Text] [Related]
35. Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: a primer. ElKalaawy N; Wassal A Biosystems; 2015 Mar; 129():1-18. PubMed ID: 25637875 [TBL] [Abstract][Full Text] [Related]
36. An algebraic approach to signaling cascades with N layers. Feliu E; Knudsen M; Andersen LN; Wiuf C Bull Math Biol; 2012 Jan; 74(1):45-72. PubMed ID: 21523510 [TBL] [Abstract][Full Text] [Related]
37. Variable elimination in post-translational modification reaction networks with mass-action kinetics. Feliu E; Wiuf C J Math Biol; 2013 Jan; 66(1-2):281-310. PubMed ID: 22311196 [TBL] [Abstract][Full Text] [Related]
38. Computing algebraic functions with biochemical reaction networks. Buisman HJ; ten Eikelder HM; Hilbers PA; Liekens AM Artif Life; 2009; 15(1):5-19. PubMed ID: 18855568 [TBL] [Abstract][Full Text] [Related]
39. Reduction of nonlinear dynamic systems with an application to signal transduction pathways. Petrov V; Nikolova E; Wolkenhauer O IET Syst Biol; 2007 Jan; 1(1):2-9. PubMed ID: 17370424 [TBL] [Abstract][Full Text] [Related]