These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 17070898)

  • 1. Diversification of function in the haloacid dehalogenase enzyme superfamily: The role of the cap domain in hydrolytic phosphoruscarbon bond cleavage.
    Lahiri SD; Zhang G; Dunaway-Mariano D; Allen KN
    Bioorg Chem; 2006 Dec; 34(6):394-409. PubMed ID: 17070898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of bacillus cereus phosphonoacetaldehyde hydrolase: insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily.
    Morais MC; Zhang W; Baker AS; Zhang G; Dunaway-Mariano D; Allen KN
    Biochemistry; 2000 Aug; 39(34):10385-96. PubMed ID: 10956028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic evidence for a substrate-induced fit in phosphonoacetaldehyde hydrolase catalysis.
    Zhang G; Mazurkie AS; Dunaway-Mariano D; Allen KN
    Biochemistry; 2002 Nov; 41(45):13370-7. PubMed ID: 12416981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray crystallographic and site-directed mutagenesis analysis of the mechanism of Schiff-base formation in phosphonoacetaldehyde hydrolase catalysis.
    Morais MC; Zhang G; Zhang W; Olsen DB; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2004 Mar; 279(10):9353-61. PubMed ID: 14670958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the structural determinants underlying discrimination between substrate and solvent in beta-phosphoglucomutase catalysis.
    Dai J; Finci L; Zhang C; Lahiri S; Zhang G; Peisach E; Allen KN; Dunaway-Mariano D
    Biochemistry; 2009 Mar; 48(9):1984-95. PubMed ID: 19154134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the substrate specificity loop of the HAD superfamily cap domain.
    Lahiri SD; Zhang G; Dai J; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 Mar; 43(10):2812-20. PubMed ID: 15005616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily.
    Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN
    Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the mechanism of catalysis by the P-C bond-cleaving enzyme phosphonoacetaldehyde hydrolase derived from gene sequence analysis and mutagenesis.
    Baker AS; Ciocci MJ; Metcalf WW; Kim J; Babbitt PC; Wanner BL; Martin BM; Dunaway-Mariano D
    Biochemistry; 1998 Jun; 37(26):9305-15. PubMed ID: 9649311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cap-domain closure enables diverse substrate recognition by the C2-type haloacid dehalogenase-like sugar phosphatase Plasmodium falciparum HAD1.
    Park J; Guggisberg AM; Odom AR; Tolia NH
    Acta Crystallogr D Biol Crystallogr; 2015 Sep; 71(Pt 9):1824-34. PubMed ID: 26327372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the Bacillus cereus phosphonoacetaldehyde hydrolase. Evidence for a Schiff base mechanism and sequence analysis of an active-site peptide containing the catalytic lysine residue.
    Olsen DB; Hepburn TW; Moos M; Mariano PS; Dunaway-Mariano D
    Biochemistry; 1988 Mar; 27(6):2229-34. PubMed ID: 3132206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.
    Felts RL; Ou Z; Reilly TJ; Tanner JJ
    Biochemistry; 2007 Oct; 46(39):11110-9. PubMed ID: 17824671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine 90 function in 4-chlorobenzoyl-coenzyme a dehalogenase catalysis.
    Zhang W; Wei Y; Luo L; Taylor KL; Yang G; Dunaway-Mariano D; Benning MM; Holden HM
    Biochemistry; 2001 Nov; 40(45):13474-82. PubMed ID: 11695894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-Ray crystallographic and mutational studies of fluoroacetate dehalogenase from Burkholderia sp. strain FA1.
    Jitsumori K; Omi R; Kurihara T; Kurata A; Mihara H; Miyahara I; Hirotsu K; Esaki N
    J Bacteriol; 2009 Apr; 191(8):2630-7. PubMed ID: 19218394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The X-ray crystallographic structure and activity analysis of a Pseudomonas-specific subfamily of the HAD enzyme superfamily evidences a novel biochemical function.
    Peisach E; Wang L; Burroughs AM; Aravind L; Dunaway-Mariano D; Allen KN
    Proteins; 2008 Jan; 70(1):197-207. PubMed ID: 17654544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic cycling in beta-phosphoglucomutase: a kinetic and structural analysis.
    Zhang G; Dai J; Wang L; Dunaway-Mariano D; Tremblay LW; Allen KN
    Biochemistry; 2005 Jul; 44(27):9404-16. PubMed ID: 15996095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation.
    Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR
    Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation.
    Schleberger C; Sachelaru P; Brandsch R; Schulz GE
    J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D
    Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a.
    Silvaggi NR; Zhang C; Lu Z; Dai J; Dunaway-Mariano D; Allen KN
    J Biol Chem; 2006 May; 281(21):14918-26. PubMed ID: 16540464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.