These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17071061)

  • 1. A computational model of visual marking using an inter-connected network of spiking neurons: the spiking search over time & space model (sSoTS).
    Mavritsaki E; Heinke D; Humphreys GW; Deco G
    J Physiol Paris; 2006; 100(1-3):110-24. PubMed ID: 17071061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Binding and Segmentation in Visual Search: A Computational Neuroscience Analysis.
    Mavritsaki E; Humphreys G
    J Cogn Neurosci; 2016 Oct; 28(10):1553-67. PubMed ID: 27243617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating posterior parietal damage in a biologically plausible framework: neuropsychological tests of the search over time and space model.
    Mavritsaki E; Heinke D; Deco G; Humphreys GW
    Cogn Neuropsychol; 2009 Jun; 26(4):343-90. PubMed ID: 20013434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An onset advantage without a preview benefit: neuropsychological evidence separating onset and preview effects in search.
    Humphreys GW; Olivers CN; Yoon EY
    J Cogn Neurosci; 2006 Jan; 18(1):110-20. PubMed ID: 16417687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of new objects by onset capture and visual marking.
    Osugi T; Hayashi D; Murakami I
    Vision Res; 2016 May; 122():21-33. PubMed ID: 27001341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blink and you won't miss it: the preview benefit in visual marking survives internally generated eyeblinks.
    von Mühlenen A; Watson D; Gunnell DO
    J Exp Psychol Hum Percept Perform; 2013 Oct; 39(5):1279-90. PubMed ID: 23398259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual marking of moving objects: a role for top-down feature-based inhibition in selection.
    Watson DG; Humphreys GW
    J Exp Psychol Hum Percept Perform; 1998 Jun; 24(3):946-62. PubMed ID: 9627427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rebound spiking as a neural mechanism for surface filling-in.
    Supèr H; Romeo A
    J Cogn Neurosci; 2011 Feb; 23(2):491-501. PubMed ID: 20433239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective attention model with spiking elements.
    Chik D; Borisyuk R; Kazanovich Y
    Neural Netw; 2009 Sep; 22(7):890-900. PubMed ID: 19278823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal dynamics of bottom-up and top-down processes in area V4 of macaque monkeys performing a visual search.
    Ogawa T; Komatsu H
    Exp Brain Res; 2006 Aug; 173(1):1-13. PubMed ID: 16506012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual marking for search: behavioral and event-related potential analyses.
    Jacobsen T; Humphreys GW; Schröger E; Roeber U
    Brain Res Cogn Brain Res; 2002 Nov; 14(3):410-21. PubMed ID: 12421664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual grouping constrains inhibition in time-based visual selection.
    Zupan Z; Watson DG
    Atten Percept Psychophys; 2020 Feb; 82(2):500-517. PubMed ID: 31875319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations.
    Buschman TJ; Miller EK
    Neuron; 2009 Aug; 63(3):386-96. PubMed ID: 19679077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of response variability from firing rate effects in frontal eye field neurons during visual stimulation, working memory, and attention.
    Chang MH; Armstrong KM; Moore T
    J Neurosci; 2012 Feb; 32(6):2204-16. PubMed ID: 22323732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surround modulation of neuronal responses in V1 is as stable over time as responses to direct stimulation of receptive fields.
    Paşca SP; Singer W; Nikolić D
    Cortex; 2010 Oct; 46(9):1199-203. PubMed ID: 20557882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli.
    Mante V; Bonin V; Carandini M
    Neuron; 2008 May; 58(4):625-38. PubMed ID: 18498742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field.
    Monosov IE; Trageser JC; Thompson KG
    Neuron; 2008 Feb; 57(4):614-25. PubMed ID: 18304489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When a reappearance is old news: visual marking survives occlusion.
    Kunar MA; Humphreys GW; Smith KJ; Watson DG
    J Exp Psychol Hum Percept Perform; 2003 Feb; 29(1):185-98. PubMed ID: 12669757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
    Lo CC; Boucher L; Paré M; Schall JD; Wang XJ
    J Neurosci; 2009 Jul; 29(28):9059-71. PubMed ID: 19605643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
    Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF
    J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.