These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
628 related articles for article (PubMed ID: 17071143)
1. Enantioselective screen-printed amperometric biosensor for the determination of D-amino acids. Wcisło M; Compagnone D; Trojanowicz M Bioelectrochemistry; 2007 Sep; 71(1):91-8. PubMed ID: 17071143 [TBL] [Abstract][Full Text] [Related]
2. Comparison of amperometric biosensors fabricated by palladium sputtering, palladium electrodeposition and Nafion/carbon nanotube casting on screen-printed carbon electrodes. Lee CH; Wang SC; Yuan CJ; Wen MF; Chang KS Biosens Bioelectron; 2007 Jan; 22(6):877-84. PubMed ID: 16644200 [TBL] [Abstract][Full Text] [Related]
3. An enzyme electrode for amperometric measurement of D-amino acid. Wu X; Van Wie BJ; Kidwell DA Biosens Bioelectron; 2004 Nov; 20(4):879-86. PubMed ID: 15522605 [TBL] [Abstract][Full Text] [Related]
4. Construction of an amperometric D-amino acid biosensor based on D-amino acid oxidase/carboxylated mutliwalled carbon nanotube/copper nanoparticles/polyalinine modified gold electrode. Lata S; Batra B; Kumar P; Pundir CS Anal Biochem; 2013 Jun; 437(1):1-9. PubMed ID: 23399389 [TBL] [Abstract][Full Text] [Related]
5. Amperometric and impedimetric characterization of a glutamate biosensor based on Nafion and a methyl viologen modified glassy carbon electrode. Maalouf R; Chebib H; Saïkali Y; Vittori O; Sigaud M; Jaffrezic-Renault N Biosens Bioelectron; 2007 May; 22(11):2682-8. PubMed ID: 17161943 [TBL] [Abstract][Full Text] [Related]
7. Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Wu BY; Hou SH; Yin F; Zhao ZX; Wang YY; Wang XS; Chen Q Biosens Bioelectron; 2007 Jun; 22(12):2854-60. PubMed ID: 17212983 [TBL] [Abstract][Full Text] [Related]
9. Stable and sensitive flow-through monitoring of phenol using a carbon nanotube based screen printed biosensor. Alarcón G; Guix M; Ambrosi A; Ramirez Silva MT; Palomar Pardave ME; Merkoçi A Nanotechnology; 2010 Jun; 21(24):245502. PubMed ID: 20498520 [TBL] [Abstract][Full Text] [Related]
10. A biosensor for all D-amino acids using evolved D-amino acid oxidase. Rosini E; Molla G; Rossetti C; Pilone MS; Pollegioni L; Sacchi S J Biotechnol; 2008 Jul; 135(4):377-84. PubMed ID: 18588925 [TBL] [Abstract][Full Text] [Related]
11. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Kang X; Mai Z; Zou X; Cai P; Mo J Anal Biochem; 2007 Oct; 369(1):71-9. PubMed ID: 17678866 [TBL] [Abstract][Full Text] [Related]
12. Biosensor based on polyaniline-Prussian Blue/multi-walled carbon nanotubes hybrid composites. Zou Y; Sun LX; Xu F Biosens Bioelectron; 2007 May; 22(11):2669-74. PubMed ID: 17141494 [TBL] [Abstract][Full Text] [Related]
13. DNA as a support for glucose oxidase immobilization at Prussian blue-modified glassy carbon electrode in biosensor preparation. Kafi AK; Lee DY; Park SH; Kwon YS J Nanosci Nanotechnol; 2006 Nov; 6(11):3539-42. PubMed ID: 17252806 [TBL] [Abstract][Full Text] [Related]
14. Multilayer assembly of Prussian blue nanoclusters and enzyme-immobilized poly(toluidine blue) films and its application in glucose biosensor construction. Zhang D; Zhang K; Yao YL; Xia XH; Chen HY Langmuir; 2004 Aug; 20(17):7303-7. PubMed ID: 15301519 [TBL] [Abstract][Full Text] [Related]
15. Construction, assembling and application of a trehalase-GOD enzyme electrode system. Antonelli ML; Arduini F; Laganà A; Moscone D; Siliprandi V Biosens Bioelectron; 2009 Jan; 24(5):1382-8. PubMed ID: 18815024 [TBL] [Abstract][Full Text] [Related]
16. Amperometric biosensor for determining human salivary phosphate. Kwan RC; Leung HF; Hon PY; Cheung HC; Hirota K; Renneberg R Anal Biochem; 2005 Aug; 343(2):263-7. PubMed ID: 15993373 [TBL] [Abstract][Full Text] [Related]
17. Development of a conductometric phosphate biosensor based on tri-layer maltose phosphorylase composite films. Zhang Z; Jaffrezic-Renault N; Bessueille F; Leonard D; Xia S; Wang X; Chen L; Zhao J Anal Chim Acta; 2008 May; 615(1):73-9. PubMed ID: 18440365 [TBL] [Abstract][Full Text] [Related]
18. Optimisation of the composition of a screen-printed acrylate polymer enzyme layer with respect to an improved selectivity and stability of enzyme electrodes. Mersal GA; Khodari M; Bilitewski U Biosens Bioelectron; 2004 Sep; 20(2):305-14. PubMed ID: 15308235 [TBL] [Abstract][Full Text] [Related]
19. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO(2) sol-gel. Zou Y; Xiang C; Sun LX; Xu F Biosens Bioelectron; 2008 Feb; 23(7):1010-6. PubMed ID: 18054479 [TBL] [Abstract][Full Text] [Related]
20. Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Ben Rejeb I; Arduini F; Amine A; Gargouri M; Palleschi G Anal Chim Acta; 2007 Jun; 594(1):1-8. PubMed ID: 17560378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]