BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1707123)

  • 1. The importance of the 5'-region in regulating the stability of sdh mRNA in Bacillus subtilis.
    Melin L; Fridén H; Dehlin E; Rutberg L; von Gabain A
    Mol Microbiol; 1990 Nov; 4(11):1881-9. PubMed ID: 1707123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon.
    Melin L; Rutberg L; von Gabain A
    J Bacteriol; 1989 Apr; 171(4):2110-5. PubMed ID: 2495271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in the stability of specific mRNA species in response to growth stage in Bacillus subtilis.
    Resnekov O; Rutberg L; von Gabain A
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8355-9. PubMed ID: 1700430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the promoter of the Bacillus subtilis sdh operon.
    Melin L; Magnusson K; Rutberg L
    J Bacteriol; 1987 Jul; 169(7):3232-6. PubMed ID: 3036777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression in Escherichia coli of sdhA, the structural gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex.
    Magnusson K; Hederstedt L; Rutberg L
    J Bacteriol; 1985 Jun; 162(3):1180-5. PubMed ID: 2987185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of succinate dehydrogenase in Bacillus subtilis by protoplast fusion.
    Hederstedt L; Magnusson K; Rutberg L
    J Bacteriol; 1982 Oct; 152(1):157-65. PubMed ID: 6811547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional regulation of the Bacillus subtilis asnH operon and role of the 5'-proximal long sequence triplication in RNA stabilization.
    Morinaga T; Kobayashi K; Ashida H; Fujita Y; Yoshida KI
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1632-1641. PubMed ID: 20185509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis.
    Hambraeus G; Persson M; Rutberg B
    Microbiology (Reading); 2000 Dec; 146 Pt 12():3051-3059. PubMed ID: 11101663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system.
    Mueller JP; Bukusoglu G; Sonenshein AL
    J Bacteriol; 1992 Jul; 174(13):4361-73. PubMed ID: 1378051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex.
    Phillips MK; Hederstedt L; Hasnain S; Rutberg L; Guest JR
    J Bacteriol; 1987 Feb; 169(2):864-73. PubMed ID: 3027051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Succinate dehydrogenase gene arrangement and expression in Anaplasma phagocytophilum.
    Massung RF; Hiratzka SL; Brayton KA; Palmer GH; Lee KN
    Gene; 2008 May; 414(1-2):41-8. PubMed ID: 18378408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4.
    Grundy FJ; Henkin TM
    J Bacteriol; 1990 Nov; 172(11):6372-9. PubMed ID: 1699930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of erythromycin-induced ermC mRNA stability in Bacillus subtilis.
    Bechhofer DH; Zen KH
    J Bacteriol; 1989 Nov; 171(11):5803-11. PubMed ID: 2478520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the succinate dehydrogenase-encoding gene cluster (sdh) from the rickettsia Coxiella burnetii.
    Heinzen RA; Mo YY; Robertson SJ; Mallavia LP
    Gene; 1995 Mar; 155(1):27-34. PubMed ID: 7698664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide sequence of the gene for cytochrome b558 of the Bacillus subtilis succinate dehydrogenase complex.
    Magnusson K; Philips MK; Guest JR; Rutberg L
    J Bacteriol; 1986 Jun; 166(3):1067-71. PubMed ID: 3086287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. trp RNA-binding attenuation protein (TRAP)-trp leader RNA interactions mediate translational as well as transcriptional regulation of the Bacillus subtilis trp operon.
    Merino E; Babitzke P; Yanofsky C
    J Bacteriol; 1995 Nov; 177(22):6362-70. PubMed ID: 7592410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex.
    Resnekov O; Melin L; Carlsson P; Mannerlöv M; von Gabain A; Hederstedt L
    Mol Gen Genet; 1992 Aug; 234(2):285-96. PubMed ID: 1508153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and biochemical characterization of Bacillus subtilis mutants defective in expression and function of cytochrome b-558.
    Fridén H; Rutberg L; Magnusson K; Hederstedt L
    Eur J Biochem; 1987 Nov; 168(3):695-701. PubMed ID: 3117551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase.
    Sun DX; Setlow P
    J Bacteriol; 1991 Jun; 173(12):3831-45. PubMed ID: 1711029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.