These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 1707123)
21. A succinate dehydrogenase with novel structure and properties from the hyperthermophilic archaeon Sulfolobus acidocaldarius: genetic and biophysical characterization. Janssen S; Schäfer G; Anemüller S; Moll R J Bacteriol; 1997 Sep; 179(17):5560-9. PubMed ID: 9287013 [TBL] [Abstract][Full Text] [Related]
22. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Stein T; Borchert S; Kiesau P; Heinzmann S; Klöss S; Klein C; Helfrich M; Entian KD Mol Microbiol; 2002 Apr; 44(2):403-16. PubMed ID: 11972779 [TBL] [Abstract][Full Text] [Related]
23. Characterization of a pleiotropic succinate dehydrogenase-negative mutant of Bacillus subtilis. Magnusson K; Rutberg B; Hederstedt L; Rutberg L J Gen Microbiol; 1983 Apr; 129(4):917-22. PubMed ID: 6411859 [TBL] [Abstract][Full Text] [Related]
24. The dnaK operon of Bacillus subtilis is heptacistronic. Homuth G; Masuda S; Mogk A; Kobayashi Y; Schumann W J Bacteriol; 1997 Feb; 179(4):1153-64. PubMed ID: 9023197 [TBL] [Abstract][Full Text] [Related]
25. Temporal regulation and forespore-specific expression of the spore photoproduct lyase gene by sigma-G RNA polymerase during Bacillus subtilis sporulation. Pedraza-Reyes M; Gutiérrez-Corona F; Nicholson WL J Bacteriol; 1994 Jul; 176(13):3983-91. PubMed ID: 8021181 [TBL] [Abstract][Full Text] [Related]
26. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR, TnrA, and Spo0H. Wray LV; Ferson AE; Fisher SH J Bacteriol; 1997 Sep; 179(17):5494-501. PubMed ID: 9287005 [TBL] [Abstract][Full Text] [Related]
27. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. Sá-Nogueira I; Mota LJ J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819 [TBL] [Abstract][Full Text] [Related]
28. A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability. Glatz E; Nilsson RP; Rutberg L; Rutberg B Mol Microbiol; 1996 Jan; 19(2):319-28. PubMed ID: 8825777 [TBL] [Abstract][Full Text] [Related]
29. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247 [TBL] [Abstract][Full Text] [Related]
30. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner. Hambraeus G; Rutberg B Arch Microbiol; 2004 Feb; 181(2):137-43. PubMed ID: 14685649 [TBL] [Abstract][Full Text] [Related]
31. Cloning and deletion analysis of a genomic segment of Bacillus subtilis coding for the sdhA, B, C (succinate dehydrogenase) and gerE (spore germination) loci. Hasnain S; Sammons R; Roberts I; Thomas CM J Gen Microbiol; 1985 Sep; 131(9):2269-79. PubMed ID: 3934334 [TBL] [Abstract][Full Text] [Related]
32. Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-alpha cluster. Li X; Lindahl L; Sha Y; Zengel JM J Bacteriol; 1997 Nov; 179(22):7046-54. PubMed ID: 9371452 [TBL] [Abstract][Full Text] [Related]
33. Regulation of plasmid virulence gene expression in Salmonella dublin involves an unusual operon structure. Krause M; Fang FC; Guiney DG J Bacteriol; 1992 Jul; 174(13):4482-9. PubMed ID: 1378053 [TBL] [Abstract][Full Text] [Related]
34. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. Albano M; Breitling R; Dubnau DA J Bacteriol; 1989 Oct; 171(10):5386-404. PubMed ID: 2507524 [TBL] [Abstract][Full Text] [Related]
35. Characterization of succinic dehydrogenase mutants of Bacillus subtilis by crossed immunoelectrophoresis. Rutberg B; Hederstedt L; Holmgren E; Rutberg L J Bacteriol; 1978 Oct; 136(1):304-11. PubMed ID: 101513 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. Turner RJ; Lu Y; Switzer RL J Bacteriol; 1994 Jun; 176(12):3708-22. PubMed ID: 8206849 [TBL] [Abstract][Full Text] [Related]
37. New properties of Bacillus subtilis succinate dehydrogenase altered at the active site. The apparent active site thiol of succinate oxidoreductases is dispensable for succinate oxidation. Hederstedt L; Hedén LO Biochem J; 1989 Jun; 260(2):491-7. PubMed ID: 2504145 [TBL] [Abstract][Full Text] [Related]
38. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. O'Reilly M; Woodson K; Dowds BC; Devine KM Mol Microbiol; 1994 Jan; 11(1):87-98. PubMed ID: 7511775 [TBL] [Abstract][Full Text] [Related]
39. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Gerth U; Krüger E; Derré I; Msadek T; Hecker M Mol Microbiol; 1998 May; 28(4):787-802. PubMed ID: 9643546 [TBL] [Abstract][Full Text] [Related]
40. Localization of a second SigH promoter in the Bacillus subtilis sigA operon and regulation of dnaE expression by the promoter. Qi FX; Doi RH J Bacteriol; 1990 Oct; 172(10):5631-6. PubMed ID: 1698762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]