These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 17071618)
1. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. Aracena-Parks P; Goonasekera SA; Gilman CP; Dirksen RT; Hidalgo C; Hamilton SL J Biol Chem; 2006 Dec; 281(52):40354-68. PubMed ID: 17071618 [TBL] [Abstract][Full Text] [Related]
2. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel (RyR1): sites and nature of oxidative modification. Sun QA; Wang B; Miyagi M; Hess DT; Stamler JS J Biol Chem; 2013 Aug; 288(32):22961-71. PubMed ID: 23798702 [TBL] [Abstract][Full Text] [Related]
3. Identification of hyperreactive cysteines within ryanodine receptor type 1 by mass spectrometry. Voss AA; Lango J; Ernst-Russell M; Morin D; Pessah IN J Biol Chem; 2004 Aug; 279(33):34514-20. PubMed ID: 15197184 [TBL] [Abstract][Full Text] [Related]
4. S-glutathionylation decreases Mg2+ inhibition and S-nitrosylation enhances Ca2+ activation of RyR1 channels. Aracena P; Sánchez G; Donoso P; Hamilton SL; Hidalgo C J Biol Chem; 2003 Oct; 278(44):42927-35. PubMed ID: 12920114 [TBL] [Abstract][Full Text] [Related]
5. Effects of S-glutathionylation and S-nitrosylation on calmodulin binding to triads and FKBP12 binding to type 1 calcium release channels. Aracena P; Tang W; Hamilton SL; Hidalgo C Antioxid Redox Signal; 2005; 7(7-8):870-81. PubMed ID: 15998242 [TBL] [Abstract][Full Text] [Related]
6. Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Sun J; Xin C; Eu JP; Stamler JS; Meissner G Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11158-62. PubMed ID: 11562475 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. Chaube R; Hess DT; Wang YJ; Plummer B; Sun QA; Laurita K; Stamler JS J Biol Chem; 2014 Mar; 289(12):8612-9. PubMed ID: 24509862 [TBL] [Abstract][Full Text] [Related]
8. Physiological role for S-nitrosylation of RyR1 in skeletal muscle function and development. Sun QA; Grimmett ZW; Hess DT; Perez LG; Qian Z; Chaube R; Venetos NM; Plummer BN; Laurita KR; Premont RT; Stamler JS Biochem Biophys Res Commun; 2024 Sep; 723():150163. PubMed ID: 38820626 [TBL] [Abstract][Full Text] [Related]
9. Peroxynitrite modification of protein thiols: oxidation, nitrosylation, and S-glutathiolation of functionally important cysteine residue(s) in the sarcoplasmic reticulum Ca-ATPase. Viner RI; Williams TD; Schöneich C Biochemistry; 1999 Sep; 38(38):12408-15. PubMed ID: 10493809 [TBL] [Abstract][Full Text] [Related]
10. Conformation-dependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. Phimister AJ; Lango J; Lee EH; Ernst-Russell MA; Takeshima H; Ma J; Allen PD; Pessah IN J Biol Chem; 2007 Mar; 282(12):8667-77. PubMed ID: 17237236 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide, NOC-12, and S-nitrosoglutathione modulate the skeletal muscle calcium release channel/ryanodine receptor by different mechanisms. An allosteric function for O2 in S-nitrosylation of the channel. Sun J; Xu L; Eu JP; Stamler JS; Meissner G J Biol Chem; 2003 Mar; 278(10):8184-9. PubMed ID: 12509428 [TBL] [Abstract][Full Text] [Related]
12. Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. Goonasekera SA; Beard NA; Groom L; Kimura T; Lyfenko AD; Rosenfeld A; Marty I; Dulhunty AF; Dirksen RT J Gen Physiol; 2007 Oct; 130(4):365-78. PubMed ID: 17846166 [TBL] [Abstract][Full Text] [Related]
13. Classes of thiols that influence the activity of the skeletal muscle calcium release channel. Sun J; Xu L; Eu JP; Stamler JS; Meissner G J Biol Chem; 2001 May; 276(19):15625-30. PubMed ID: 11278999 [TBL] [Abstract][Full Text] [Related]
14. Ryanodine receptor type 1 (RyR1) mutations C4958S and C4961S reveal excitation-coupled calcium entry (ECCE) is independent of sarcoplasmic reticulum store depletion. Hurne AM; O'Brien JJ; Wingrove D; Cherednichenko G; Allen PD; Beam KG; Pessah IN J Biol Chem; 2005 Nov; 280(44):36994-7004. PubMed ID: 16120606 [TBL] [Abstract][Full Text] [Related]
15. Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity. Hashemy SI; Johansson C; Berndt C; Lillig CH; Holmgren A J Biol Chem; 2007 May; 282(19):14428-36. PubMed ID: 17355958 [TBL] [Abstract][Full Text] [Related]
16. Role of Cys³⁶⁰² in the function and regulation of the cardiac ryanodine receptor. Mi T; Xiao Z; Guo W; Tang Y; Hiess F; Xiao J; Wang Y; Zhang JZ; Zhang L; Wang R; Jones PP; Chen SR Biochem J; 2015 Apr; 467(1):177-90. PubMed ID: 25605235 [TBL] [Abstract][Full Text] [Related]
17. Transmembrane redox sensor of ryanodine receptor complex. Feng W; Liu G; Allen PD; Pessah IN J Biol Chem; 2000 Nov; 275(46):35902-7. PubMed ID: 10998414 [TBL] [Abstract][Full Text] [Related]
18. Modulation of cardiac ryanodine receptor activity by ROS and RNS. Donoso P; Sanchez G; Bull R; Hidalgo C Front Biosci (Landmark Ed); 2011 Jan; 16(2):553-67. PubMed ID: 21196188 [TBL] [Abstract][Full Text] [Related]
19. A transverse tubule NADPH oxidase activity stimulates calcium release from isolated triads via ryanodine receptor type 1 S -glutathionylation. Hidalgo C; Sánchez G; Barrientos G; Aracena-Parks P J Biol Chem; 2006 Sep; 281(36):26473-82. PubMed ID: 16762927 [TBL] [Abstract][Full Text] [Related]
20. S100A1's single cysteine is an indispensable redox switch for the protection against diastolic calcium waves in cardiomyocytes. Seitz A; Busch M; Kroemer J; Schneider A; Simon S; Jungmann A; Katus HA; Most P; Ritterhoff J Am J Physiol Heart Circ Physiol; 2024 Jul; 327(1):H000. PubMed ID: 38819384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]