These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 17071790)
21. Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: implications for a novel mechanism of action. Zhao H; Sood R; Jutila A; Bose S; Fimland G; Nissen-Meyer J; Kinnunen PK Biochim Biophys Acta; 2006 Sep; 1758(9):1461-74. PubMed ID: 16806056 [TBL] [Abstract][Full Text] [Related]
22. The two-peptide class II bacteriocins: structure, production, and mode of action. Oppegård C; Rogne P; Emanuelsen L; Kristiansen PE; Fimland G; Nissen-Meyer J J Mol Microbiol Biotechnol; 2007; 13(4):210-9. PubMed ID: 17827971 [TBL] [Abstract][Full Text] [Related]
23. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Dennison SR; Howe J; Morton LH; Brandenburg K; Harris F; Phoenix DA Biochem Biophys Res Commun; 2006 Sep; 347(4):1006-10. PubMed ID: 16857163 [TBL] [Abstract][Full Text] [Related]
24. The Localization of Phenolic Compounds in Liposomal Bilayers and Their Effects on Surface Characteristics and Colloidal Stability. Malekar SA; Sarode AL; Bach AC; Worthen DR AAPS PharmSciTech; 2016 Dec; 17(6):1468-1476. PubMed ID: 26842800 [TBL] [Abstract][Full Text] [Related]
25. Folding of beta-sheet membrane proteins: a hydrophobic hexapeptide model. Wimley WC; Hristova K; Ladokhin AS; Silvestro L; Axelsen PH; White SH J Mol Biol; 1998 Apr; 277(5):1091-110. PubMed ID: 9571025 [TBL] [Abstract][Full Text] [Related]
27. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. Gazit E; Miller IR; Biggin PC; Sansom MS; Shai Y J Mol Biol; 1996 May; 258(5):860-70. PubMed ID: 8637016 [TBL] [Abstract][Full Text] [Related]
28. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. Langosch D; Crane JM; Brosig B; Hellwig A; Tamm LK; Reed J J Mol Biol; 2001 Aug; 311(4):709-21. PubMed ID: 11518525 [TBL] [Abstract][Full Text] [Related]
29. Influence of the bilayer composition on the binding and membrane disrupting effect of Polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity. dos Santos Cabrera MP; Arcisio-Miranda M; Gorjão R; Leite NB; de Souza BM; Curi R; Procopio J; Ruggiero Neto J; Palma MS Biochemistry; 2012 Jun; 51(24):4898-908. PubMed ID: 22630563 [TBL] [Abstract][Full Text] [Related]
30. Spectroscopic studies of molecular organization of antibiotic amphotericin B in monolayers and dipalmitoylphosphatidylcholine lipid multibilayers. Gagoś M; Arczewska M Biochim Biophys Acta; 2010 Nov; 1798(11):2124-30. PubMed ID: 20699086 [TBL] [Abstract][Full Text] [Related]
31. Detection of peptide-lipid interactions in mixed monolayers, using isotherms, atomic force microscopy, and fourier transform infrared analyses. Vié V; Van Mau N; Chaloin L; Lesniewska E; Le Grimellec C; Heitz F Biophys J; 2000 Feb; 78(2):846-56. PubMed ID: 10653797 [TBL] [Abstract][Full Text] [Related]
32. How Membrane-Active Peptides Get into Lipid Membranes. Sani MA; Separovic F Acc Chem Res; 2016 Jun; 49(6):1130-8. PubMed ID: 27187572 [TBL] [Abstract][Full Text] [Related]
33. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
35. Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Hauge HH; Mantzilas D; Moll GN; Konings WN; Driessen AJ; Eijsink VG; Nissen-Meyer J Biochemistry; 1998 Nov; 37(46):16026-32. PubMed ID: 9819195 [TBL] [Abstract][Full Text] [Related]
36. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
37. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
38. Interaction of a magainin-PGLa hybrid peptide with membranes: insight into the mechanism of synergism. Nishida M; Imura Y; Yamamoto M; Kobayashi S; Yano Y; Matsuzaki K Biochemistry; 2007 Dec; 46(49):14284-90. PubMed ID: 18004888 [TBL] [Abstract][Full Text] [Related]
39. Mode of action of lactocin 160, a bacteriocin from vaginal Lactobacillus rhamnosus. Li J; Aroutcheva AA; Faro S; Chikindas ML Infect Dis Obstet Gynecol; 2005 Sep; 13(3):135-40. PubMed ID: 16126497 [TBL] [Abstract][Full Text] [Related]
40. The conformational analysis of peptides using Fourier transform IR spectroscopy. Haris PI; Chapman D Biopolymers; 1995; 37(4):251-63. PubMed ID: 7540054 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]