BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 17072287)

  • 21. The energy expenditure index: a method to quantitate and compare walking energy expenditure for children and adolescents.
    Rose J; Gamble JG; Lee J; Lee R; Haskell WL
    J Pediatr Orthop; 1991; 11(5):571-8. PubMed ID: 1918341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy cost of walking in low lumbar myelomeningocele.
    Moore CA; Nejad B; Novak RA; Dias LS
    J Pediatr Orthop; 2001; 21(3):388-91. PubMed ID: 11371826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electromyographic differentiation of diplegic cerebral palsy from idiopathic toe walking: involuntary coactivation of the quadriceps and gastrocnemius.
    Rose J; Martin JG; Torburn L; Rinsky LA; Gamble JG
    J Pediatr Orthop; 1999; 19(5):677-82. PubMed ID: 10488875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methodological considerations for improving the reproducibility of walking efficiency outcomes in clinical gait studies.
    Brehm MA; Knol DL; Harlaar J
    Gait Posture; 2008 Feb; 27(2):196-201. PubMed ID: 17467276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Test-retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway.
    Sorsdahl AB; Moe-Nilssen R; Strand LI
    Gait Posture; 2008 Jan; 27(1):43-50. PubMed ID: 17300940
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic cost of over ground gait in younger stroke patients and healthy controls.
    Platts MM; Rafferty D; Paul L
    Med Sci Sports Exerc; 2006 Jun; 38(6):1041-6. PubMed ID: 16775542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Walking energy expenditure in able-bodied individuals: a comparison of common measures of energy efficiency.
    Thomas SS; Buckon CE; Schwartz MH; Sussman MD; Aiona MD
    Gait Posture; 2009 Jun; 29(4):592-6. PubMed ID: 19188067
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction.
    Damiano DL; Martellotta TL; Sullivan DJ; Granata KP; Abel MF
    Arch Phys Med Rehabil; 2000 Jul; 81(7):895-900. PubMed ID: 10896001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relationships among functional outcome measures used for assessing children with ambulatory CP.
    Sullivan E; Barnes D; Linton JL; Calmes J; Damiano D; Oeffinger D; Abel M; Bagley A; Gorton G; Nicholson D; Rogers S; Tylkowski C
    Dev Med Child Neurol; 2007 May; 49(5):338-44. PubMed ID: 17489806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait asymmetries in children with cerebral palsy: do they deteriorate with running?
    Böhm H; Döderlein L
    Gait Posture; 2012 Feb; 35(2):322-7. PubMed ID: 22055251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reliability and validity of an activity monitor (IDEEA) in the determination of temporal-spatial gait parameters in individuals with cerebral palsy.
    Mackey AH; Stott NS; Walt SE
    Gait Posture; 2008 Nov; 28(4):634-9. PubMed ID: 18534854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serum leptin levels in children with cerebral palsy: relationship with growth and nutritional status.
    Yakut A; Dinleyici EC; Idem S; Yarar C; Dogruel N; Colak O
    Neuro Endocrinol Lett; 2006 Aug; 27(4):507-12. PubMed ID: 16891993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The clinical relevance of selecting resting data at different points in an energy cost of walking test in cerebral palsy.
    Plasschaert F; Jones K; Forward M
    Dev Med Child Neurol; 2011 Mar; 53(3):245-9. PubMed ID: 21087237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of ankle-foot orthoses on gait and energy expenditure in spina bifida.
    Duffy CM; Graham HK; Cosgrove AP
    J Pediatr Orthop; 2000; 20(3):356-61. PubMed ID: 10823604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for quantifying dynamic muscle dysfunction in children and young adults with cerebral palsy.
    Wakeling J; Delaney R; Dudkiewicz I
    Gait Posture; 2007 Apr; 25(4):580-9. PubMed ID: 16876416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interrelationships among thigh muscle co-contraction, quadriceps muscle strength and the aerobic demand of walking in children with cerebral palsy.
    Keefer DJ; Tseh W; Caputo JL; Apperson K; McGreal S; Vint P; Morgan DW
    Electromyogr Clin Neurophysiol; 2004 Mar; 44(2):103-10. PubMed ID: 15061404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cocontraction and phasic activity during GAIT in children with cerebral palsy.
    Unnithan VB; Dowling JJ; Frost G; Volpe Ayub B; Bar-Or O
    Electromyogr Clin Neurophysiol; 1996 Dec; 36(8):487-94. PubMed ID: 8985677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of angular momentum during walking in children with cerebral palsy.
    Bruijn SM; Meyns P; Jonkers I; Kaat D; Duysens J
    Res Dev Disabil; 2011; 32(6):2860-6. PubMed ID: 21641770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen cost versus a 1-minute walk test in a population of children with bilateral spastic cerebral palsy.
    Kerr C; McDowell BC; Cosgrove A
    J Pediatr Orthop; 2007; 27(3):283-7. PubMed ID: 17414010
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-related changes in mechanical and metabolic energy during typical gait.
    Van de Walle P; Desloovere K; Truijen S; Gosselink R; Aerts P; Hallemans A
    Gait Posture; 2010 Apr; 31(4):495-501. PubMed ID: 20304652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.