BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 17072684)

  • 1. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii.
    Kang HJ; Uegaki K; Fukada H; Ishikawa K
    Extremophiles; 2007 Mar; 11(2):251-6. PubMed ID: 17072684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the function of a hyperthermophilic endoglucanase from Pyrococcus horikoshii that hydrolyzes crystalline cellulose.
    Kashima Y; Mori K; Fukada H; Ishikawa K
    Extremophiles; 2005 Feb; 9(1):37-43. PubMed ID: 15375673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the putative substrate binding region of hyperthermophilic endoglucanase from Pyrococcus horikoshii.
    Kim HW; Takagi Y; Hagihara Y; Ishikawa K
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2585-7. PubMed ID: 17928686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N-terminal β-sheet of the hyperthermophilic endoglucanase from Pyrococcus horikoshii is critical for thermostability.
    Yang TC; Legault S; Kayiranga EA; Kumaran J; Ishikawa K; Sung WL
    Appl Environ Microbiol; 2012 May; 78(9):3059-67. PubMed ID: 22344652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of disulfide bond in hyperthermophilic endocellulase.
    Kim HW; Ishikawa K
    Extremophiles; 2013 Jul; 17(4):593-9. PubMed ID: 23624891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete saccharification of cellulose at high temperature using endocellulase and beta-glucosidase from Pyrococcus sp.
    Kim HW; Ishikawa K
    J Microbiol Biotechnol; 2010 May; 20(5):889-92. PubMed ID: 20519912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Structure-function relationship and thermostability of ribonucleoprotein enzyme from hyperthermophilic archaeon].
    Kimura M
    Seikagaku; 2009 Dec; 81(12):1038-48. PubMed ID: 20077846
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of two proline dipeptidases (prolidases) from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Theriot CM; Tove SR; Grunden AM
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):177-88. PubMed ID: 19784642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of active center in hyperthermophilic cellulase from Pyrococcus horikoshii.
    Kang HJ; Ishikawa K
    J Microbiol Biotechnol; 2007 Aug; 17(8):1249-53. PubMed ID: 18051592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization.
    Cheung YY; Lam SY; Chu WK; Allen MD; Bycroft M; Wong KB
    Biochemistry; 2005 Mar; 44(12):4601-11. PubMed ID: 15779887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii.
    Mine S; Ikegami T; Kawasaki K; Nakamura T; Uegaki K
    Protein Expr Purif; 2012 Aug; 84(2):265-9. PubMed ID: 22713621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Cloning, expression and biochemical characterization of a novel diacetylchitobiose deacetylase from the hyperthermophilic archaeon Pyrococcus horikoshii].
    Liu B; Ni JF; Shen YL
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):255-8. PubMed ID: 16736587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the hyperthermophilic chitinase from Pyrococcus furiosus: activity toward crystalline chitin.
    Oku T; Ishikawa K
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1696-701. PubMed ID: 16861805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization and preliminary X-ray analysis of endoglucanase from Pyrococcus horikoshii.
    Kim HW; Mino K; Ishikawa K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Dec; 64(Pt 12):1169-71. PubMed ID: 19052378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots.
    Kim HW; Ishikawa K
    Biochem J; 2011 Jul; 437(2):223-30. PubMed ID: 21557724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for the subunit assembly of the primase from an archaeon Pyrococcus horikoshii.
    Ito N; Matsui I; Matsui E
    FEBS J; 2007 Mar; 274(5):1340-51. PubMed ID: 17286576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes beta-1,4 bonds in mixed-linkage (1-->3),(1-->4)-beta-D-glucans and cellulose.
    Bauer MW; Driskill LE; Callen W; Snead MA; Mathur EJ; Kelly RM
    J Bacteriol; 1999 Jan; 181(1):284-90. PubMed ID: 9864341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overproduction of hyperthermostable β-1,4-endoglucanase from the archaeon Pyrococcus horikoshii by tobacco chloroplast engineering.
    Nakahira Y; Ishikawa K; Tanaka K; Tozawa Y; Shiina T
    Biosci Biotechnol Biochem; 2013; 77(10):2140-3. PubMed ID: 24096651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperthermostable endoglucanase from Pyrococcus horikoshii.
    Ando S; Ishida H; Kosugi Y; Ishikawa K
    Appl Environ Microbiol; 2002 Jan; 68(1):430-3. PubMed ID: 11772658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum.
    Limón MC; Margolles-Clark E; Benítez T; Penttilä M
    FEMS Microbiol Lett; 2001 Apr; 198(1):57-63. PubMed ID: 11325554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.