These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17072851)
1. Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements. Tsigkou O; Hench LL; Boccaccini AR; Polak JM; Stevens MM J Biomed Mater Res A; 2007 Mar; 80(4):837-51. PubMed ID: 17072851 [TBL] [Abstract][Full Text] [Related]
2. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Tsigkou O; Jones JR; Polak JM; Stevens MM Biomaterials; 2009 Jul; 30(21):3542-50. PubMed ID: 19339047 [TBL] [Abstract][Full Text] [Related]
3. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biological behavior. Leal AI; Caridade SG; Ma J; Yu N; Gomes ME; Reis RL; Jansen JA; Walboomers XF; Mano JF Dent Mater; 2013 Apr; 29(4):427-36. PubMed ID: 23422419 [TBL] [Abstract][Full Text] [Related]
4. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Wilda H; Gough JE Biomaterials; 2006 Oct; 27(30):5220-9. PubMed ID: 16814857 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
6. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance. Chen Q; Garcia RP; Munoz J; Pérez de Larraya U; Garmendia N; Yao Q; Boccaccini AR ACS Appl Mater Interfaces; 2015 Nov; 7(44):24715-25. PubMed ID: 26460819 [TBL] [Abstract][Full Text] [Related]
7. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro. Helen W; Gough JE Acta Biomater; 2008 Mar; 4(2):230-43. PubMed ID: 18023627 [TBL] [Abstract][Full Text] [Related]
8. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Lu HH; Tang A; Oh SC; Spalazzi JP; Dionisio K Biomaterials; 2005 Nov; 26(32):6323-34. PubMed ID: 15919111 [TBL] [Abstract][Full Text] [Related]
9. Bioglass/carbonate apatite/collagen composite scaffold dissolution products promote human osteoblast differentiation. Ferreira SA; Young G; Jones JR; Rankin S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111393. PubMed ID: 33254998 [TBL] [Abstract][Full Text] [Related]
10. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering. Xynos ID; Hukkanen MV; Batten JJ; Buttery LD; Hench LL; Polak JM Calcif Tissue Int; 2000 Oct; 67(4):321-9. PubMed ID: 11000347 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Poh PS; Hutmacher DW; Stevens MM; Woodruff MA Biofabrication; 2013 Dec; 5(4):045005. PubMed ID: 24192136 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility of bioresorbable poly(L-lactic acid) composite scaffolds obtained by supercritical gas foaming with human fetal bone cells. Montjovent MO; Mathieu L; Hinz B; Applegate LL; Bourban PE; Zambelli PY; Månson JA; Pioletti DP Tissue Eng; 2005; 11(11-12):1640-9. PubMed ID: 16411809 [TBL] [Abstract][Full Text] [Related]
14. [Biocompatibility of poly-L-lactic acid/Bioglass-guided bone regeneration membranes processed with oxygen plasma]. Fang W; Zeng SG; Gao WF Nan Fang Yi Ke Da Xue Xue Bao; 2015 Apr; 35(4):567-72. PubMed ID: 25907946 [TBL] [Abstract][Full Text] [Related]
15. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films. Gao Y; Chang J J Biomater Appl; 2009 Aug; 24(2):119-38. PubMed ID: 18801895 [TBL] [Abstract][Full Text] [Related]
16. In vitro evaluation of novel bioactive composites based on Bioglass-filled polylactide foams for bone tissue engineering scaffolds. Blaker JJ; Gough JE; Maquet V; Notingher I; Boccaccini AR J Biomed Mater Res A; 2003 Dec; 67(4):1401-11. PubMed ID: 14624528 [TBL] [Abstract][Full Text] [Related]
17. PDLLA/Bioglass composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Verrier S; Blaker JJ; Maquet V; Hench LL; Boccaccini AR Biomaterials; 2004 Jul; 25(15):3013-21. PubMed ID: 14967534 [TBL] [Abstract][Full Text] [Related]
18. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Hattar S; Asselin A; Greenspan D; Oboeuf M; Berdal A; Sautier JM Biomaterials; 2005 Mar; 26(8):839-48. PubMed ID: 15353195 [TBL] [Abstract][Full Text] [Related]
19. Preparation and characterization of biodegradable poly(D,L-lactide) and surface-modified bioactive glass composites as bone repair materials. Zhang du J; Zhang LF; Xiong ZC; Bai W; Xiong CD J Mater Sci Mater Med; 2009 Oct; 20(10):1971-8. PubMed ID: 19449200 [TBL] [Abstract][Full Text] [Related]
20. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Bielby RC; Pryce RS; Hench LL; Polak JM Tissue Eng; 2005; 11(3-4):479-88. PubMed ID: 15869426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]