These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 17073306)
1. The application of laser microdissection to in planta gene expression profiling of the maize anthracnose stalk rot fungus Colletotrichum graminicola. Tang W; Coughlan S; Crane E; Beatty M; Duvick J Mol Plant Microbe Interact; 2006 Nov; 19(11):1240-50. PubMed ID: 17073306 [TBL] [Abstract][Full Text] [Related]
2. Application of laser microdissection to study plant-fungal pathogen interactions. Fosu-Nyarko J; Jones MG; Wang Z Methods Mol Biol; 2010; 638():153-63. PubMed ID: 20238267 [TBL] [Abstract][Full Text] [Related]
3. The application of laser microdissection to profiling fungal pathogen gene expression in planta. Tang WH; Zhang Y; Duvick J Methods Mol Biol; 2012; 835():219-36. PubMed ID: 22183657 [TBL] [Abstract][Full Text] [Related]
4. The yeast signal sequence trap identifies secreted proteins of the hemibiotrophic corn pathogen Colletotrichum graminicola. Krijger JJ; Horbach R; Behr M; Schweizer P; Deising HB; Wirsel SG Mol Plant Microbe Interact; 2008 Oct; 21(10):1325-36. PubMed ID: 18785828 [TBL] [Abstract][Full Text] [Related]
5. The role of a fadA ortholog in the growth and development of Colletotrichum graminicola in vitro and in planta. Venard C; Kulshrestha S; Sweigard J; Nuckles E; Vaillancourt L Fungal Genet Biol; 2008 Jun; 45(6):973-83. PubMed ID: 18448365 [TBL] [Abstract][Full Text] [Related]
6. Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. Cai S; Lashbrook CC Plant J; 2006 Nov; 48(4):628-37. PubMed ID: 17026538 [TBL] [Abstract][Full Text] [Related]
7. Laser microdissection for gene expression profiling. Field LA; Deyarmin B; Shriver CD; Ellsworth DL; Ellsworth RE Methods Mol Biol; 2011; 755():17-45. PubMed ID: 21761291 [TBL] [Abstract][Full Text] [Related]
8. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola. Albarouki E; Deising HB Mol Plant Microbe Interact; 2013 Jun; 26(6):695-708. PubMed ID: 23639025 [TBL] [Abstract][Full Text] [Related]
9. Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Wicklow DT; Jordan AM; Gloer JB Mycol Res; 2009 Dec; 113(Pt 12):1433-42. PubMed ID: 19825415 [TBL] [Abstract][Full Text] [Related]
10. Large-scale gene discovery in the septoria tritici blotch fungus Mycosphaerella graminicola with a focus on in planta expression. Kema GH; van der Lee TA; Mendes O; Verstappen EC; Lankhorst RK; Sandbrink H; van der Burgt A; Zwiers LH; Csukai M; Waalwijk C Mol Plant Microbe Interact; 2008 Sep; 21(9):1249-60. PubMed ID: 18700829 [TBL] [Abstract][Full Text] [Related]
11. γ-Glutamyltransferases (GGT) in Colletotrichum graminicola: mRNA and enzyme activity, and evidence that CgGGT1 allows glutathione utilization during nitrogen deficiency. Bello MH; Morin D; Epstein L Fungal Genet Biol; 2013 Feb; 51():72-83. PubMed ID: 23207689 [TBL] [Abstract][Full Text] [Related]
12. A chitin synthase with a myosin-like motor domain is essential for hyphal growth, appressorium differentiation, and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola. Werner S; Sugui JA; Steinberg G; Deising HB Mol Plant Microbe Interact; 2007 Dec; 20(12):1555-67. PubMed ID: 17990963 [TBL] [Abstract][Full Text] [Related]
13. CPR1: a gene encoding a putative signal peptidase that functions in pathogenicity of Colletotrichum graminicola to maize. Thon MR; Nuckles EM; Takach JE; Vaillancourt LJ Mol Plant Microbe Interact; 2002 Feb; 15(2):120-8. PubMed ID: 11876424 [TBL] [Abstract][Full Text] [Related]
14. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Behr M; Humbeck K; Hause G; Deising HB; Wirsel SG Mol Plant Microbe Interact; 2010 Jul; 23(7):879-92. PubMed ID: 20521951 [TBL] [Abstract][Full Text] [Related]
15. Alteration of gene expression during nasopharyngeal carcinogenesis revealed by oligonucleotide microarray after microdissection of tumor tissue and normal epithelia from nasopharynx. Liu ZQ; Tian YQ; Hu YF; Li XL; Ma FR; Li GY Chin Med J (Engl); 2009 Feb; 122(4):437-43. PubMed ID: 19302751 [TBL] [Abstract][Full Text] [Related]
17. Amplification of mRNA from laser-microdissected single or clustered cells in formalin-fixed and paraffin-embedded tissues for application in quantitative real-time PCR. Theophile K; Jonigk D; Kreipe H; Bock O Diagn Mol Pathol; 2008 Jun; 17(2):101-6. PubMed ID: 18382351 [TBL] [Abstract][Full Text] [Related]
18. Optimized procedures for microarray analysis of histological specimens processed by laser capture microdissection. Upson JJ; Stoyanova R; Cooper HS; Patriotis C; Ross EA; Boman B; Clapper ML; Knudson AG; Bellacosa A J Cell Physiol; 2004 Dec; 201(3):366-73. PubMed ID: 15389559 [TBL] [Abstract][Full Text] [Related]
19. A highly conserved metalloprotease effector enhances virulence in the maize anthracnose fungus Colletotrichum graminicola. Sanz-Martín JM; Pacheco-Arjona JR; Bello-Rico V; Vargas WA; Monod M; Díaz-Mínguez JM; Thon MR; Sukno SA Mol Plant Pathol; 2016 Sep; 17(7):1048-62. PubMed ID: 26619206 [TBL] [Abstract][Full Text] [Related]
20. Manual exfoliation of fresh tissue obviates the need for frozen sections for molecular profiling. Mojica WD; Rapkiewicz AV; Liotta LA; Espina V Cancer; 2005 Dec; 105(6):483-91. PubMed ID: 16015639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]