These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
602 related articles for article (PubMed ID: 17073405)
1. Robust algorithm for alignment of liquid chromatography-mass spectrometry analyses in an accurate mass and time tag data analysis pipeline. Jaitly N; Monroe ME; Petyuk VA; Clauss TR; Adkins JN; Smith RD Anal Chem; 2006 Nov; 78(21):7397-409. PubMed ID: 17073405 [TBL] [Abstract][Full Text] [Related]
2. A geometric approach for the alignment of liquid chromatography-mass spectrometry data. Lange E; Gröpl C; Schulz-Trieglaff O; Leinenbach A; Huber C; Reinert K Bioinformatics; 2007 Jul; 23(13):i273-81. PubMed ID: 17646306 [TBL] [Abstract][Full Text] [Related]
3. Time alignment algorithms based on selected mass traces for complex LC-MS data. Christin C; Hoefsloot HC; Smilde AK; Suits F; Bischoff R; Horvatovich PL J Proteome Res; 2010 Mar; 9(3):1483-95. PubMed ID: 20070124 [TBL] [Abstract][Full Text] [Related]
4. Making broad proteome protein measurements in 1-5 min using high-speed RPLC separations and high-accuracy mass measurements. Shen Y; Strittmatter EF; Zhang R; Metz TO; Moore RJ; Li F; Udseth HR; Smith RD; Unger KK; Kumar D; Lubda D Anal Chem; 2005 Dec; 77(23):7763-73. PubMed ID: 16316187 [TBL] [Abstract][Full Text] [Related]
6. Retention time alignment algorithms for LC/MS data must consider non-linear shifts. Podwojski K; Fritsch A; Chamrad DC; Paul W; Sitek B; Stühler K; Mutzel P; Stephan C; Meyer HE; Urfer W; Ickstadt K; Rahnenführer J Bioinformatics; 2009 Mar; 25(6):758-64. PubMed ID: 19176558 [TBL] [Abstract][Full Text] [Related]
7. Chromatographic alignment of ESI-LC-MS proteomics data sets by ordered bijective interpolated warping. Prince JT; Marcotte EM Anal Chem; 2006 Sep; 78(17):6140-52. PubMed ID: 16944896 [TBL] [Abstract][Full Text] [Related]
8. A platform for accurate mass and time analyses of mass spectrometry data. May D; Fitzgibbon M; Liu Y; Holzman T; Eng J; Kemp CJ; Whiteaker J; Paulovich A; McIntosh M J Proteome Res; 2007 Jul; 6(7):2685-94. PubMed ID: 17559252 [TBL] [Abstract][Full Text] [Related]
9. MassUntangler: a novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data. Ballardini R; Benevento M; Arrigoni G; Pattini L; Roda A J Chromatogr A; 2011 Dec; 1218(49):8859-68. PubMed ID: 21783198 [TBL] [Abstract][Full Text] [Related]
10. Improving mass and liquid chromatography based identification of proteins using bayesian scoring. Chen SS; Deutsch EW; Yi EC; Li XJ; Goodlett DR; Aebersold R J Proteome Res; 2005; 4(6):2174-84. PubMed ID: 16335964 [TBL] [Abstract][Full Text] [Related]
11. An approach to enhancing coverage of the urinary metabonome using liquid chromatography-ion mobility-mass spectrometry. Harry EL; Weston DJ; Bristow AW; Wilson ID; Creaser CS J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Aug; 871(2):357-61. PubMed ID: 18502703 [TBL] [Abstract][Full Text] [Related]
12. A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bellew M; Coram M; Fitzgibbon M; Igra M; Randolph T; Wang P; May D; Eng J; Fang R; Lin C; Chen J; Goodlett D; Whiteaker J; Paulovich A; McIntosh M Bioinformatics; 2006 Aug; 22(15):1902-9. PubMed ID: 16766559 [TBL] [Abstract][Full Text] [Related]
13. Large scale pesticide multiresidue methods in food combining liquid chromatography--time-of-flight mass spectrometry and tandem mass spectrometry. García-Reyes JF; Hernando MD; Ferrer C; Molina-Díaz A; Fernández-Alba AR Anal Chem; 2007 Oct; 79(19):7308-23. PubMed ID: 17718536 [TBL] [Abstract][Full Text] [Related]
14. Strategies to avoid false negative findings in residue analysis using liquid chromatography coupled to time-of-flight mass spectrometry. Kaufmann A; Butcher P Rapid Commun Mass Spectrom; 2006; 20(23):3566-72. PubMed ID: 17091534 [TBL] [Abstract][Full Text] [Related]
15. An alternative sampling algorithm for use in liquid chromatography/tandem mass spectrometry experiments. Kohli BM; Eng JK; Nitsch RM; Konietzko U Rapid Commun Mass Spectrom; 2005; 19(5):589-96. PubMed ID: 15685682 [TBL] [Abstract][Full Text] [Related]
16. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis. Wu HY; Tseng VS; Liao PC J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769 [TBL] [Abstract][Full Text] [Related]
17. Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. Dai X; Fang X; Zhang C; Xu R; Xu B J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Oct; 857(2):287-95. PubMed ID: 17704012 [TBL] [Abstract][Full Text] [Related]
18. A statistical method for chromatographic alignment of LC-MS data. Wang P; Tang H; Fitzgibbon MP; McIntosh M; Coram M; Zhang H; Yi E; Aebersold R Biostatistics; 2007 Apr; 8(2):357-67. PubMed ID: 16880200 [TBL] [Abstract][Full Text] [Related]
19. Reproducibility of LC-MS-based protein identification. Berg M; Parbel A; Pettersen H; Fenyö D; Björkesten L J Exp Bot; 2006; 57(7):1509-14. PubMed ID: 16551682 [TBL] [Abstract][Full Text] [Related]