BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17073427)

  • 1. Strategy for the identification of sites of phosphorylation in proteins: neutral loss triggered electron capture dissociation.
    Sweet SM; Creese AJ; Cooper HJ
    Anal Chem; 2006 Nov; 78(21):7563-9. PubMed ID: 17073427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2.
    Sweet SM; Mardakheh FK; Ryan KJ; Langton AJ; Heath JK; Cooper HJ
    Anal Chem; 2008 Sep; 80(17):6650-7. PubMed ID: 18683950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-dependent electron capture dissociation FT-ICR mass spectrometry for proteomic analyses.
    Cooper HJ; Akbarzadeh S; Heath JK; Zeller M
    J Proteome Res; 2005; 4(5):1538-44. PubMed ID: 16212404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of histidine phosphorylation using tandem MS and ion-electron reactions.
    Kleinnijenhuis AJ; Kjeldsen F; Kallipolitis B; Haselmann KF; Jensen ON
    Anal Chem; 2007 Oct; 79(19):7450-6. PubMed ID: 17822303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal oxide-based enrichment combined with gas-phase ion-electron reactions for improved mass spectrometric characterization of protein phosphorylation.
    Kweon HK; Håkansson K
    J Proteome Res; 2008 Feb; 7(2):749-55. PubMed ID: 18171022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins.
    Hunter AP; Games DE
    Rapid Commun Mass Spectrom; 1994 Jul; 8(7):559-70. PubMed ID: 8075429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PhosTShunter: a fast and reliable tool to detect phosphorylated peptides in liquid chromatography Fourier transform tandem mass spectrometry data sets.
    Köcher T; Savitski MM; Nielsen ML; Zubarev RA
    J Proteome Res; 2006 Mar; 5(3):659-68. PubMed ID: 16512682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined infrared multiphoton dissociation and electron capture dissociation with a hollow electron beam in Fourier transform ion cyclotron resonance mass spectrometry.
    Tsybin YO; Witt M; Baykut G; Kjeldsen F; Håkansson P
    Rapid Commun Mass Spectrom; 2003; 17(15):1759-68. PubMed ID: 12872281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3.
    Palumbo AM; Reid GE
    Anal Chem; 2008 Dec; 80(24):9735-47. PubMed ID: 19012417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide and protein characterization by high-rate electron capture dissociation Fourier transform ion cyclotron resonance mass spectrometry.
    Tsybin YO; Ramström M; Witt M; Baykut G; Håkansson P
    J Mass Spectrom; 2004 Jul; 39(7):719-29. PubMed ID: 15282750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron capture dissociation of singly and multiply phosphorylated peptides.
    Stensballe A; Jensen ON; Olsen JV; Haselmann KF; Zubarev RA
    Rapid Commun Mass Spectrom; 2000; 14(19):1793-800. PubMed ID: 11006587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation.
    Bergström Lind S; Molin M; Savitski MM; Emilsson L; Aström J; Hedberg L; Adams C; Nielsen ML; Engström A; Elfineh L; Andersson E; Zubarev RA; Pettersson U
    J Proteome Res; 2008 Jul; 7(7):2897-910. PubMed ID: 18543961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.
    Kalli A; Håkansson K
    J Proteome Res; 2008 Jul; 7(7):2834-44. PubMed ID: 18549259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of electron capture dissociation in biomolecular analysis.
    Cooper HJ; Håkansson K; Marshall AG
    Mass Spectrom Rev; 2005; 24(2):201-22. PubMed ID: 15389856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphopeptide fragmentation and analysis by mass spectrometry.
    Boersema PJ; Mohammed S; Heck AJ
    J Mass Spectrom; 2009 Jun; 44(6):861-78. PubMed ID: 19504542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-line liquid chromatography electron capture dissociation for the characterization of phosphorylation sites in proteins.
    Sweet SM; Cooper HJ
    Methods Mol Biol; 2009; 527():191-9, x. PubMed ID: 19241014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activated-electron photodetachment dissociation for the structural characterization of protein polyanions.
    Larraillet V; Antoine R; Dugourd P; Lemoine J
    Anal Chem; 2009 Oct; 81(20):8410-6. PubMed ID: 19775153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron capture dissociation mass spectrometry in characterization of peptides and proteins.
    Bakhtiar R; Guan Z
    Biotechnol Lett; 2006 Jul; 28(14):1047-59. PubMed ID: 16794768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry.
    Chang EJ; Archambault V; McLachlin DT; Krutchinsky AN; Chait BT
    Anal Chem; 2004 Aug; 76(15):4472-83. PubMed ID: 15283590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis.
    Wu HY; Tseng VS; Liao PC
    J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.