BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17073450)

  • 1. Rational attempts to optimize non-natural nucleotides for selective incorporation opposite an abasic site.
    Zhang X; Donnelly A; Lee I; Berdis AJ
    Biochemistry; 2006 Nov; 45(44):13293-303. PubMed ID: 17073450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of non-natural nucleotides for selective incorporation opposite damaged DNA.
    Vineyard D; Zhang X; Donnelly A; Lee I; Berdis AJ
    Org Biomol Chem; 2007 Nov; 5(22):3623-30. PubMed ID: 17971991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potential chemotherapeutic strategy for the selective inhibition of promutagenic DNA synthesis by nonnatural nucleotides.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13111-21. PubMed ID: 16185079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is a thymine dimer replicated via a transient abasic site intermediate? A comparative study using non-natural nucleotides.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Apr; 46(15):4486-98. PubMed ID: 17378586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobicity, shape, and pi-electron contributions during translesion DNA synthesis.
    Zhang X; Lee I; Zhou X; Berdis AJ
    J Am Chem Soc; 2006 Jan; 128(1):143-9. PubMed ID: 16390141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of nonnatural nucleotides to probe the contributions of shape complementarity and pi-electron surface area during DNA polymerization.
    Zhang X; Lee I; Berdis AJ
    Biochemistry; 2005 Oct; 44(39):13101-10. PubMed ID: 16185078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue.
    Lee I; Berdis A
    Chembiochem; 2006 Dec; 7(12):1990-7. PubMed ID: 17091513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the contributions of desolvation and base-stacking during translesion DNA synthesis.
    Zhang X; Lee I; Berdis AJ
    Org Biomol Chem; 2004 Jun; 2(12):1703-11. PubMed ID: 15188037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the contribution of base stacking during translesion DNA replication.
    Reineks EZ; Berdis AJ
    Biochemistry; 2004 Jan; 43(2):393-404. PubMed ID: 14717593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of non-natural nucleotides to probe template-independent DNA synthesis.
    Berdis AJ; McCutcheon D
    Chembiochem; 2007 Aug; 8(12):1399-408. PubMed ID: 17607682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing the "A-rule" of translesion DNA synthesis: promutagenic DNA synthesis using modified nucleoside triphosphates.
    Devadoss B; Lee I; Berdis AJ
    Biochemistry; 2007 Dec; 46(48):13752-61. PubMed ID: 17983244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism and dynamics of translesion DNA synthesis catalyzed by the Escherichia coli Klenow fragment.
    Sheriff A; Motea E; Lee I; Berdis AJ
    Biochemistry; 2008 Aug; 47(33):8527-37. PubMed ID: 18652487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translesion DNA synthesis: polymerase response to altered nucleotides.
    Strauss BS
    Cancer Surv; 1985; 4(3):493-516. PubMed ID: 2825983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of the 3'-5' exonuclease of the replicative T4 DNA polymerase allows translesion DNA synthesis at an abasic site.
    Tanguy Le Gac N; Delagoutte E; Germain M; Villani G
    J Mol Biol; 2004 Mar; 336(5):1023-34. PubMed ID: 15037066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opposed steric constraints in human DNA polymerase beta and E. coli DNA polymerase I.
    Di Pasquale F; Fischer D; Grohmann D; Restle T; Geyer A; Marx A
    J Am Chem Soc; 2008 Aug; 130(32):10748-57. PubMed ID: 18627154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific partner for abasic damage in DNA.
    Matray TJ; Kool ET
    Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme.
    Hatahet Z; Zhou M; Reha-Krantz LJ; Ide H; Morrical SW; Wallace SS
    J Mol Biol; 1999 Mar; 286(4):1045-57. PubMed ID: 10047481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caught bending the A-rule: crystal structures of translesion DNA synthesis with a non-natural nucleotide.
    Zahn KE; Belrhali H; Wallace SS; DoubliƩ S
    Biochemistry; 2007 Sep; 46(37):10551-61. PubMed ID: 17718515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.