These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 17073770)
1. Transforming growth factor-beta-regulated expression of genes in macrophages implicated in the control of cholesterol homoeostasis. Ramji DP; Singh NN; Foka P; Irvine SA; Arnaoutakis K Biochem Soc Trans; 2006 Dec; 34(Pt 6):1141-4. PubMed ID: 17073770 [TBL] [Abstract][Full Text] [Related]
2. The role of transforming growth factor-beta in atherosclerosis. Singh NN; Ramji DP Cytokine Growth Factor Rev; 2006 Dec; 17(6):487-99. PubMed ID: 17056295 [TBL] [Abstract][Full Text] [Related]
3. Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Feinberg MW; Jain MK Panminerva Med; 2005 Sep; 47(3):169-86. PubMed ID: 16462725 [TBL] [Abstract][Full Text] [Related]
4. [Transforming growth factor beta-1: structure, function, and regulation mechanisms in cancer]. Peralta-Zaragoza O; Lagunas-MartÃnez A; Madrid-Marina V Salud Publica Mex; 2001; 43(4):340-51. PubMed ID: 11547595 [TBL] [Abstract][Full Text] [Related]
5. Critical role for casein kinase 2 and phosphoinositide-3-kinase in the interferon-gamma-induced expression of monocyte chemoattractant protein-1 and other key genes implicated in atherosclerosis. Harvey EJ; Li N; Ramji DP Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):806-12. PubMed ID: 17255531 [TBL] [Abstract][Full Text] [Related]
6. Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Grainger DJ Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):399-404. PubMed ID: 14699019 [TBL] [Abstract][Full Text] [Related]
7. The core-aldehyde 9-oxononanoyl cholesterol increases the level of transforming growth factor beta1-specific receptors on promonocytic U937 cell membranes. Gargiulo S; Gamba P; Sottero B; Biasi F; Chiarpotto E; Serviddio G; Vendemiale G; Poli G; Leonarduzzi G Aging Cell; 2009 Apr; 8(2):77-87. PubMed ID: 19302374 [TBL] [Abstract][Full Text] [Related]
8. Understanding the role of transforming growth factor-beta signalling in the heart: overview of studies using genetic mouse models. Xiao H; Zhang YY Clin Exp Pharmacol Physiol; 2008 Mar; 35(3):335-41. PubMed ID: 18290874 [TBL] [Abstract][Full Text] [Related]
9. TGF-beta and atherosclerosis in man. Grainger DJ Cardiovasc Res; 2007 May; 74(2):213-22. PubMed ID: 17382916 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Wrzesinski SH; Wan YY; Flavell RA Clin Cancer Res; 2007 Sep; 13(18 Pt 1):5262-70. PubMed ID: 17875754 [TBL] [Abstract][Full Text] [Related]
11. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. Bacman D; Merkel S; Croner R; Papadopoulos T; Brueckl W; Dimmler A BMC Cancer; 2007 Aug; 7():156. PubMed ID: 17692120 [TBL] [Abstract][Full Text] [Related]
12. New regulatory mechanisms of TGF-beta receptor function. Kang JS; Liu C; Derynck R Trends Cell Biol; 2009 Aug; 19(8):385-94. PubMed ID: 19648010 [TBL] [Abstract][Full Text] [Related]
13. Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma. Yang F; Strand DW; Rowley DR Oncogene; 2008 Jan; 27(4):450-9. PubMed ID: 17637743 [TBL] [Abstract][Full Text] [Related]
16. The immunopharmacological properties of transforming growth factor beta. Le Y; Yu X; Ruan L; Wang O; Qi D; Zhu J; Lu X; Kong Y; Cai K; Pang S; Shi X; Wang JM Int Immunopharmacol; 2005 Dec; 5(13-14):1771-82. PubMed ID: 16275614 [TBL] [Abstract][Full Text] [Related]
17. Urokinase activates macrophage PON2 gene transcription via the PI3K/ROS/MEK/SREBP-2 signalling cascade mediated by the PDGFR-beta. Fuhrman B; Gantman A; Khateeb J; Volkova N; Horke S; Kiyan J; Dumler I; Aviram M Cardiovasc Res; 2009 Oct; 84(1):145-54. PubMed ID: 19497963 [TBL] [Abstract][Full Text] [Related]
18. TGF-beta signaling in vascular biology and dysfunction. Goumans MJ; Liu Z; ten Dijke P Cell Res; 2009 Jan; 19(1):116-27. PubMed ID: 19114994 [TBL] [Abstract][Full Text] [Related]
19. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. Jeon ES; Moon HJ; Lee MJ; Song HY; Kim YM; Bae YC; Jung JS; Kim JH J Cell Sci; 2006 Dec; 119(Pt 23):4994-5005. PubMed ID: 17105765 [TBL] [Abstract][Full Text] [Related]
20. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Wesolowska A; Kwiatkowska A; Slomnicki L; Dembinski M; Master A; Sliwa M; Franciszkiewicz K; Chouaib S; Kaminska B Oncogene; 2008 Feb; 27(7):918-30. PubMed ID: 17684491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]