These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 17073785)

  • 21. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27, C28 and C29 sterols.
    Fujita S; Ohnishi T; Watanabe B; Yokota T; Takatsuto S; Fujioka S; Yoshida S; Sakata K; Mizutani M
    Plant J; 2006 Mar; 45(5):765-74. PubMed ID: 16460510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis of plant isoprenoids: perspectives for microbial engineering.
    Kirby J; Keasling JD
    Annu Rev Plant Biol; 2009; 60():335-55. PubMed ID: 19575586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungal sterol C22-desaturase is not an antimycotic target as shown by selective inhibitors and testing on clinical isolates.
    Müller C; Binder U; Maurer E; Grimm C; Giera M; Bracher F
    Steroids; 2015 Sep; 101():1-6. PubMed ID: 26022150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel Tetrahymena thermophila sterol C-22 desaturase belongs to the fatty acid hydroxylase/desaturase superfamily.
    Sanchez Granel ML; Siburu NG; Fricska A; Maldonado LL; Gargiulo LB; Nudel CB; Uttaro AD; Nusblat AD
    J Biol Chem; 2022 Oct; 298(10):102397. PubMed ID: 35988640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in the Plant β-Sitosterol/Stigmasterol Ratio Caused by the Plant Parasitic Nematode
    Cabianca A; Müller L; Pawlowski K; Dahlin P
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33557005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sterol glycosyltransferases--the enzymes that modify sterols.
    Chaturvedi P; Misra P; Tuli R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):47-68. PubMed ID: 21468635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of essential amino acid residues in a sterol 8,7-isomerase from Zea mays reveals functional homology and diversity with the isomerases of animal and fungal origin.
    Rahier A; Pierre S; Riveill G; Karst F
    Biochem J; 2008 Sep; 414(2):247-59. PubMed ID: 18459942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis.
    Okada K; Kasahara H; Yamaguchi S; Kawaide H; Kamiya Y; Nojiri H; Yamane H
    Plant Cell Physiol; 2008 Apr; 49(4):604-16. PubMed ID: 18303110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 35.
    Ahn YO; Zheng M; Bevan DR; Esen A; Shiu SH; Benson J; Peng HP; Miller JT; Cheng CL; Poulton JE; Shih MC
    Phytochemistry; 2007 Jun; 68(11):1510-20. PubMed ID: 17466346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The evolution and function of carotenoid hydroxylases in Arabidopsis.
    Kim J; Smith JJ; Tian L; Dellapenna D
    Plant Cell Physiol; 2009 Mar; 50(3):463-79. PubMed ID: 19147649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Halloween genes code for cytochrome P450 enzymes mediating synthesis of the insect moulting hormone.
    Rewitz KF; Rybczynski R; Warren JT; Gilbert LI
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1256-60. PubMed ID: 17073797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sterol Biosynthesis in Four Green Algae: A Bioinformatic Analysis of the Ergosterol Versus Phytosterol Decision Point.
    Voshall A; Christie NTM; Rose SL; Khasin M; Van Etten JL; Markham JE; Riekhof WR; Nickerson KW
    J Phycol; 2021 Aug; 57(4):1199-1211. PubMed ID: 33713347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Refining the plant steroid hormone biosynthesis pathway.
    Bishop GJ
    Trends Plant Sci; 2007 Sep; 12(9):377-80. PubMed ID: 17693126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Sterol Structure on the Physical Properties of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine Membranes Determined Using (2)H Nuclear Magnetic Resonance.
    Shaghaghi M; Chen MT; Hsueh YW; Zuckermann MJ; Thewalt JL
    Langmuir; 2016 Aug; 32(30):7654-63. PubMed ID: 27341069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes.
    Yasumoto S; Fukushima EO; Seki H; Muranaka T
    FEBS Lett; 2016 Feb; 590(4):533-40. PubMed ID: 26801524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unusual P450 reactions in plant secondary metabolism.
    Mizutani M; Sato F
    Arch Biochem Biophys; 2011 Mar; 507(1):194-203. PubMed ID: 20920462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In planta biocatalysis screen of P450s identifies 8-methoxypsoralen as a substrate for the CYP82C subfamily, yielding original chemical structures.
    Kruse T; Ho K; Yoo HD; Johnson T; Hippely M; Park JH; Flavell R; Bobzin S
    Chem Biol; 2008 Feb; 15(2):149-56. PubMed ID: 18291319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant sterol metabolism. Δ(7)-Sterol-C5-desaturase (STE1/DWARF7), Δ(5,7)-sterol-Δ(7)-reductase (DWARF5) and Δ(24)-sterol-Δ(24)-reductase (DIMINUTO/DWARF1) show multiple subcellular localizations in Arabidopsis thaliana (Heynh) L.
    Silvestro D; Andersen TG; Schaller H; Jensen PE
    PLoS One; 2013; 8(2):e56429. PubMed ID: 23409184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.
    Li Y; Beisson F
    Biochimie; 2009 Jun; 91(6):685-91. PubMed ID: 19344744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.