BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 17074361)

  • 1. Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords.
    Bertuzzi A; Fasano A; Gandolfi A; Sinisgalli C
    J Theor Biol; 2007 Feb; 244(3):388-99. PubMed ID: 17074361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reoxygenation and split-dose response to radiation in a tumour model with Krogh-type vascular geometry.
    Bertuzzi A; Fasano A; Gandolfi A; Sinisgalli C
    Bull Math Biol; 2008 May; 70(4):992-1012. PubMed ID: 18270781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression and regrowth of tumour cords following single-dose anticancer treatment.
    Bertuzzi A; D'Onofrio A; Fasano A; Gandolfi A
    Bull Math Biol; 2003 Sep; 65(5):903-31. PubMed ID: 12909255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotherapy may be delivered based on an integrated view of tumour dynamics.
    Ribba B; You B; Tod M; Girard P; Tranchand B; Trillet-Lenoir V; Freyer G
    IET Syst Biol; 2009 May; 3(3):180-90. PubMed ID: 19449978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the balance between quiescence and cell death in normal and tumour cell populations.
    Spinelli L; Torricelli A; Ubezio P; Basse B
    Math Biosci; 2006 Aug; 202(2):349-70. PubMed ID: 16697424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying mechanisms of chronotolerance and chronoefficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling.
    Altinok A; Lévi F; Goldbeter A
    Eur J Pharm Sci; 2009 Jan; 36(1):20-38. PubMed ID: 19041394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the cell cycle and cell movement in multicellular tumour spheroids.
    Tindall MJ; Please CP
    Bull Math Biol; 2007 May; 69(4):1147-65. PubMed ID: 17372784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microenvironment based model of antimitotic therapy of Gompertzian tumor growth.
    Kozusko F; Bourdeau M; Bajzer Z; Dingli D
    Bull Math Biol; 2007 Jul; 69(5):1691-708. PubMed ID: 17577604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapy burden, drug resistance, and optimal treatment regimen for cancer chemotherapy.
    Boldrini JL; Costa MI
    IMA J Math Appl Med Biol; 2000 Mar; 17(1):33-51. PubMed ID: 10757031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling and simulation of chemotherapy of haematological and gynaecological cancers.
    Nani FK; Oğuztöreli MN
    IMA J Math Appl Med Biol; 1999 Mar; 16(1):39-91. PubMed ID: 10335600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model.
    Florian JA; Eiseman JL; Parker RS
    Comput Biol Med; 2008 Mar; 38(3):339-47. PubMed ID: 18222419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-cycle times and the tumour control probability.
    Maler A; Lutscher F
    Math Med Biol; 2010 Dec; 27(4):313-42. PubMed ID: 19966342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Hsp90 inhibitor NVP-AUY922 in multicellular tumour spheroids with respect to effects on growth and PET tracer uptake.
    Monazzam A; Razifar P; Ide S; Rugaard Jensen M; Josephsson R; Blomqvist C; Langström B; Bergström M
    Nucl Med Biol; 2009 Apr; 36(3):335-42. PubMed ID: 19324279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell-based computer simulation of the oxygen-dependent tumour response to irradiation.
    Harting C; Peschke P; Borkenstein K; Karger CP
    Phys Med Biol; 2007 Aug; 52(16):4775-89. PubMed ID: 17671335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Therapeutic failure of antineoplastic agents. Extracellular and cellular causes].
    Hofsli E
    Tidsskr Nor Laegeforen; 1991 Jan; 111(1):37-40. PubMed ID: 2000585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell cycle automaton model for probing circadian patterns of anticancer drug delivery.
    Altinok A; Lévi F; Goldbeter A
    Adv Drug Deliv Rev; 2007 Aug; 59(9-10):1036-53. PubMed ID: 17692993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug penetration in solid tumours.
    Minchinton AI; Tannock IF
    Nat Rev Cancer; 2006 Aug; 6(8):583-92. PubMed ID: 16862189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early reoxygenation in tumors after irradiation: determining factors and consequences for radiotherapy regimens using daily multiple fractions.
    Crokart N; Jordan BF; Baudelet C; Ansiaux R; Sonveaux P; Grégoire V; Beghein N; DeWever J; Bouzin C; Feron O; Gallez B
    Int J Radiat Oncol Biol Phys; 2005 Nov; 63(3):901-10. PubMed ID: 16199320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling chemotherapy resistance in palliation and failed cure.
    Monro HC; Gaffney EA
    J Theor Biol; 2009 Mar; 257(2):292-302. PubMed ID: 19135065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pharmacokinetic mechanisms of resistance to anticancer medications].
    Robert J
    Bull Cancer; 1994 Dec; 81 Suppl 2():78s-81s. PubMed ID: 7727864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.