These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17074438)

  • 41. [Phosphate adsorption and desorption characteristics of several fly ashes].
    Feng Y; Hu R; Zhang Y; Zou Y; Huang Y; Wang C; Li F
    Ying Yong Sheng Tai Xue Bao; 2005 Sep; 16(9):1756-60. PubMed ID: 16355796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal power plants ash as sorbent for the removal of Cu(II) and Zn(II) ions from wastewaters.
    Tofan L; Paduraru C; Bilba D; Rotariu M
    J Hazard Mater; 2008 Aug; 156(1-3):1-8. PubMed ID: 18226443
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Mar; 152(1):337-46. PubMed ID: 17686579
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash.
    Atun G; Hisarlı G; Kurtoğlu AE; Ayar N
    J Hazard Mater; 2011 Mar; 187(1-3):562-73. PubMed ID: 21300434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetics of Remazol Black B adsorption onto carbon prepared from sugar beet pulp.
    Dursun AY; Tepe O; Uslu G; Dursun G; Saatci Y
    Environ Sci Pollut Res Int; 2013 Apr; 20(4):2472-83. PubMed ID: 22945656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Studies on the adsorption of reactive brilliant red X-3B dye on organic and carbon aerogels.
    Wu X; Wu D; Fu R
    J Hazard Mater; 2007 Aug; 147(3):1028-36. PubMed ID: 17363146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of Reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles.
    Belessi V; Romanos G; Boukos N; Lambropoulou D; Trapalis C
    J Hazard Mater; 2009 Oct; 170(2-3):836-44. PubMed ID: 19540670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste.
    Hameed BH; Mahmoud DK; Ahmad AL
    J Hazard Mater; 2008 Oct; 158(1):65-72. PubMed ID: 18308467
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent.
    Ahmed S; Unar IN; Khan HA; Maitlo G; Mahar RB; Jatoi AS; Memon AQ; Shah AK
    Environ Sci Pollut Res Int; 2020 Mar; 27(9):9619-9636. PubMed ID: 31925687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coal fly ash and synthetic coal fly ash aggregates as reactive media to remove zinc from aqueous solutions.
    Hong JK; Jo HY; Yun ST
    J Hazard Mater; 2009 May; 164(1):235-46. PubMed ID: 18805638
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Adsorption kinetics of herbicide paraquat from aqueous solution onto activated bleaching earth.
    Tsai WT; Lai CW; Hsien KJ
    Chemosphere; 2004 May; 55(6):829-37. PubMed ID: 15041287
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: kinetics, isotherms and error analysis.
    Rengaraj S; Yeon JW; Kim Y; Jung Y; Ha YK; Kim WH
    J Hazard Mater; 2007 May; 143(1-2):469-77. PubMed ID: 17097805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials--Bottom Ash and De-Oiled Soya, as adsorbents.
    Mittal A; Mittal J; Kurup L
    J Hazard Mater; 2006 Aug; 136(3):567-78. PubMed ID: 16442722
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preliminary study on removing Cs⁺/Sr²⁺ by activated porous calcium silicate-A by-product from high-alumina fly ash recycling industry.
    Chu Y; Wang R; Chen M
    J Air Waste Manag Assoc; 2015 Jan; 65(1):99-105. PubMed ID: 25946962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of lead and zinc ions from water by low cost adsorbents.
    Mishra PC; Patel RK
    J Hazard Mater; 2009 Aug; 168(1):319-25. PubMed ID: 19299083
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adsorption and desorption studies on hazardous dye Naphthol Yellow S.
    Jain R; Gupta VK; Sikarwar S
    J Hazard Mater; 2010 Oct; 182(1-3):749-56. PubMed ID: 20667651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ZnS:Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption.
    Ghaedi M; Ansari A; Sahraei R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():687-94. PubMed ID: 23831942
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2,4,6-trichlorophenol from aqueous solutions.
    Pan J; Yao H; Li X; Wang B; Huo P; Xu W; Ou H; Yan Y
    J Hazard Mater; 2011 Jun; 190(1-3):276-84. PubMed ID: 21466912
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root.
    Zhang J; Li Y; Zhang C; Jing Y
    J Hazard Mater; 2008 Feb; 150(3):774-82. PubMed ID: 17601666
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent.
    Hameed BH
    J Hazard Mater; 2009 Feb; 162(1):344-50. PubMed ID: 18572309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.