BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 17075046)

  • 1. The 39-kDa poly(ADP-ribose) glycohydrolase ARH3 hydrolyzes O-acetyl-ADP-ribose, a product of the Sir2 family of acetyl-histone deacetylases.
    Ono T; Kasamatsu A; Oka S; Moss J
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16687-91. PubMed ID: 17075046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3.
    Kasamatsu A; Nakao M; Smith BC; Comstock LR; Ono T; Kato J; Denu JM; Moss J
    J Biol Chem; 2011 Jun; 286(24):21110-7. PubMed ID: 21498885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of a mammalian 39-kDa poly(ADP-ribose) glycohydrolase.
    Oka S; Kato J; Moss J
    J Biol Chem; 2006 Jan; 281(2):705-13. PubMed ID: 16278211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARH Family of ADP-Ribose-Acceptor Hydrolases.
    Ishiwata-Endo H; Kato J; Yamashita S; Chea C; Koike K; Lee DY; Moss J
    Cells; 2022 Nov; 11(23):. PubMed ID: 36497109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of the ARH family of ADP-ribosyl-acceptor hydrolases.
    Mashimo M; Kato J; Moss J
    DNA Repair (Amst); 2014 Nov; 23():88-94. PubMed ID: 24746921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADP-Ribosyl-Acceptor Hydrolase Activities Catalyzed by the ARH Family of Proteins.
    Mashimo M; Moss J
    Methods Mol Biol; 2018; 1813():187-204. PubMed ID: 30097868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Role of ADP-Ribosyl-Acceptor Hydrolase 3 in poly(ADP-Ribose) Polymerase-1 Response to Oxidative Stress.
    Mashimo M; Moss J
    Curr Protein Pept Sci; 2016; 17(7):633-640. PubMed ID: 27090906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition.
    Pourfarjam Y; Ventura J; Kurinov I; Cho A; Moss J; Kim IK
    J Biol Chem; 2018 Aug; 293(32):12350-12359. PubMed ID: 29907568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose.
    Tong L; Denu JM
    Biochim Biophys Acta; 2010 Aug; 1804(8):1617-25. PubMed ID: 20176146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.
    Jackson MD; Denu JM
    J Biol Chem; 2002 May; 277(21):18535-44. PubMed ID: 11893743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product.
    Tanny JC; Moazed D
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):415-20. PubMed ID: 11134535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways.
    Bu X; Kato J; Moss J
    Biochem Pharmacol; 2019 Sep; 167():44-49. PubMed ID: 30267646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases.
    Borra MT; O'Neill FJ; Jackson MD; Marshall B; Verdin E; Foltz KR; Denu JM
    J Biol Chem; 2002 Apr; 277(15):12632-41. PubMed ID: 11812793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.
    Tanner KG; Landry J; Sternglanz R; Denu JM
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14178-82. PubMed ID: 11106374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases.
    Jackson MD; Schmidt MT; Oppenheimer NJ; Denu JM
    J Biol Chem; 2003 Dec; 278(51):50985-98. PubMed ID: 14522996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation.
    Liou GG; Tanny JC; Kruger RG; Walz T; Moazed D
    Cell; 2005 May; 121(4):515-527. PubMed ID: 15907466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADP-ribosylhydrolase 3 (ARH3), not poly(ADP-ribose) glycohydrolase (PARG) isoforms, is responsible for degradation of mitochondrial matrix-associated poly(ADP-ribose).
    Niere M; Mashimo M; Agledal L; Dölle C; Kasamatsu A; Kato J; Moss J; Ziegler M
    J Biol Chem; 2012 May; 287(20):16088-102. PubMed ID: 22433848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions.
    Sauve AA; Celic I; Avalos J; Deng H; Boeke JD; Schramm VL
    Biochemistry; 2001 Dec; 40(51):15456-63. PubMed ID: 11747420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.