These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1707523)

  • 1. A computer method for finding common base paired helices in aligned sequences: application to the analysis of random sequences.
    Chan L; Zuker M; Jacobson AB
    Nucleic Acids Res; 1991 Jan; 19(2):353-8. PubMed ID: 1707523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A story: unpaired adenosine bases in ribosomal RNAs.
    Gutell RR; Cannone JJ; Shang Z; Du Y; Serra MJ
    J Mol Biol; 2000 Dec; 304(3):335-54. PubMed ID: 11090278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structure prediction for aligned RNA sequences.
    Hofacker IL; Fekete M; Stadler PF
    J Mol Biol; 2002 Jun; 319(5):1059-66. PubMed ID: 12079347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits.
    Azad AA
    Nucleic Acids Res; 1979 Dec; 7(7):1913-29. PubMed ID: 94160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of the expansion segments in mammalian rRNA with the fine structure of the 80 S ribosome; a cryoelectron microscopic reconstruction of the rabbit reticulocyte ribosome at 21 A resolution.
    Dube P; Bacher G; Stark H; Mueller F; Zemlin F; van Heel M; Brimacombe R
    J Mol Biol; 1998 Jun; 279(2):403-21. PubMed ID: 9642046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Primary structure of the 5'-region of Yersinia pestis 16S rRNA].
    Dikhanov GG; Podladchikova ON
    Mol Biol (Mosk); 1990; 24(3):699-708. PubMed ID: 1698255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A phylogenetic analysis of the genus Saccharomonospora conducted with 16S rRNA gene sequences.
    Kim SB; Yoon JH; Kim H; Lee ST; Park YH; Goodfellow M
    Int J Syst Bacteriol; 1995 Apr; 45(2):351-6. PubMed ID: 7537070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary and secondary structures of Escherichia coli MRE 600 23S ribosomal RNA. Comparison with models of secondary structure for maize chloroplast 23S rRNA and for large portions of mouse and human 16S mitochondrial rRNAs.
    Branlant C; Krol A; Machatt MA; Pouyet J; Ebel JP; Edwards K; Kössel H
    Nucleic Acids Res; 1981 Sep; 9(17):4303-24. PubMed ID: 6170936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparison between relative analogy and homology of 16S rRNA partial sequences between Mycobacterium szulgai and Mycobacterium malmoense].
    Fukasawa Y
    Kekkaku; 2003 Apr; 78(4):359-63. PubMed ID: 12739396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method for predicting common structures of homologous RNAs.
    Le SY; Zhang K; Maizel JV
    Comput Biomed Res; 1995 Feb; 28(1):53-66. PubMed ID: 7542191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Well-determined" regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA.
    Zuker M; Jacobson AB
    Nucleic Acids Res; 1995 Jul; 23(14):2791-8. PubMed ID: 7544463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli mRNAs with strong Shine/Dalgarno sequences also contain 5' end sequences complementary to domain # 17 on the 16S ribosomal RNA.
    Golshani A; Krogan NJ; Xu J; Pacal M; Yang XC; Ivanov I; Providenti MA; Ganoza MC; Ivanov IG; AbouHaidar MG
    Biochem Biophys Res Commun; 2004 Apr; 316(4):978-83. PubMed ID: 15044080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two accurate sequence, structure, and phylogenetic template-based RNA alignment systems.
    Shang L; Gardner DP; Xu W; Cannone JJ; Miranker DP; Ozer S; Gutell RR
    BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S13. PubMed ID: 24565058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using multiple alignments and phylogenetic trees to detect RNA secondary structure.
    Gulko B; Haussler D
    Pac Symp Biocomput; 1996; ():350-67. PubMed ID: 9390243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence.
    Woese CR; Magrum LJ; Gupta R; Siegel RB; Stahl DA; Kop J; Crawford N; Brosius J; Gutell R; Hogan JJ; Noller HF
    Nucleic Acids Res; 1980 May; 8(10):2275-93. PubMed ID: 6159576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial nucleotide sequence of 16S ribosomal RNA isolated from armadillo-grown Mycobacterium leprae.
    Estrada IC; Lamb FI; Colston MJ; Cox RA
    J Gen Microbiol; 1988 Jun; 134(6):1449-53. PubMed ID: 2464663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes in base-paired region 28 in 16 S rRNA close to the decoding region of the 30 S ribosomal subunit are correlated to changes in tRNA binding.
    Ericson G; Minchew P; Wollenzien P
    J Mol Biol; 1995 Jul; 250(4):407-19. PubMed ID: 7542348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic analysis of the family Thermaceae with an emphasis on signature position and secondary structure of 16S rRNA.
    Chen C; Zhao S; Ben K
    FEMS Microbiol Lett; 2003 Apr; 221(2):293-8. PubMed ID: 12725941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of common folding structures of homologous RNAs.
    Han K; Kim HJ
    Nucleic Acids Res; 1993 Mar; 21(5):1251-7. PubMed ID: 7681944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.