These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17075623)

  • 21. Influence of brown coal on limit of phytotoxicity of soils contaminated with heavy metals.
    Pusz A
    J Hazard Mater; 2007 Nov; 149(3):590-7. PubMed ID: 17693020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China.
    Wang HH; Li LQ; Wu XM; Pan GX
    J Environ Sci (China); 2006; 18(3):482-7. PubMed ID: 17294644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chromium, cobalt and nickel contents in urban soils of Moa, northeastern Cuba.
    Díaz Rizo O; Coto Hernández I; Arado López JO; Díaz Arado O; López Pino N; D'Alessandro Rodríguez K
    Bull Environ Contam Toxicol; 2011 Feb; 86(2):189-93. PubMed ID: 21161504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Soil metal concentrations and vegetative assemblage structure in an urban brownfield.
    Gallagher FJ; Pechmann I; Bogden JD; Grabosky J; Weis P
    Environ Pollut; 2008 May; 153(2):351-61. PubMed ID: 17900771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia.
    Hovmand MF; Kemp K; Kystol J; Johnsen I; Riis-Nielsen T; Pacyna JM
    Environ Pollut; 2008 Oct; 155(3):537-41. PubMed ID: 18359134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.
    Senesi GS; Dell'Aglio M; Gaudiuso R; De Giacomo A; Zaccone C; De Pascale O; Miano TM; Capitelli M
    Environ Res; 2009 May; 109(4):413-20. PubMed ID: 19272593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geochemical evidence for the origin of vanadium in an urban environment.
    Hernandez H; Rodriguez R
    Environ Monit Assess; 2012 Sep; 184(9):5327-42. PubMed ID: 22083397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatial distribution of metals in soils in Baltimore, Maryland: role of native parent material, proximity to major roads, housing age and screening guidelines.
    Yesilonis ID; Pouyat RV; Neerchal NK
    Environ Pollut; 2008 Dec; 156(3):723-31. PubMed ID: 18656291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial distribution and internal metal concentrations of terrestrial arthropods in a moderately contaminated lowland floodplain along the Rhine River.
    Schipper AM; Wijnhoven S; Leuven RS; Ragas AM; Hendriks AJ
    Environ Pollut; 2008 Jan; 151(1):17-26. PubMed ID: 17521787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increase of platinum group element concentrations in soils and airborne dust in an urban area in Germany.
    Wichmann H; Anquandah GA; Schmidt C; Zachmann D; Bahadir MA
    Sci Total Environ; 2007 Dec; 388(1-3):121-7. PubMed ID: 17884143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organic and inorganic diffuse contamination in urban soils: the case of Torino (Italy).
    Biasioli M; Ajmone-Marsan F
    J Environ Monit; 2007 Aug; 9(8):862-8. PubMed ID: 17671668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal uptake by woodlice in urban soils.
    Gál J; Markiewicz-Patkowska J; Hursthouse A; Tatner P
    Ecotoxicol Environ Saf; 2008 Jan; 69(1):139-49. PubMed ID: 17321593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach.
    Kierczak J; Neel C; Aleksander-Kwaterczak U; Helios-Rybicka E; Bril H; Puziewicz J
    Chemosphere; 2008 Oct; 73(5):776-84. PubMed ID: 18649917
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of an organic amendment on availability and bio-accessibility of some metals in soils of urban recreational areas.
    Florido Mdel C; Madrid F; Madrid L
    Environ Pollut; 2011 Feb; 159(2):383-90. PubMed ID: 21112678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of a general toxicity test to predict heavy metal concentrations in residential soils.
    Aelion CM; Davis HT
    Chemosphere; 2007 Mar; 67(5):1043-9. PubMed ID: 17140621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth and reproduction of earthworms in ultramafic soils.
    Maleri R; Reinecke SA; Mesjasz-Przybylowicz J; Reinecke AJ
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):363-70. PubMed ID: 17354041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: role of pollutant migration and soil physicochemical properties.
    Zhang C; Wu L; Luo Y; Zhang H; Christie P
    Environ Pollut; 2008 Feb; 151(3):470-6. PubMed ID: 17604890
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trace heavy metals associated with crude oil: a case study of Ebocha-8 oil-spill-polluted site in Niger Delta, Nigeria.
    Osuji LC; Onojake CM
    Chem Biodivers; 2004 Nov; 1(11):1708-15. PubMed ID: 17191811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.