These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 17075860)

  • 1. Modified cellulose II powder: preparation, characterization, and tableting properties.
    de la Luz Reus Medina M; Kumar V
    J Pharm Sci; 2007 Feb; 96(2):408-20. PubMed ID: 17075860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of cellulose II powders as a potential multifunctional excipient in tablet formulations.
    de la Luz Reus Medina M; Kumar V
    Int J Pharm; 2006 Sep; 322(1-2):31-5. PubMed ID: 16828996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid.
    Kumar V; de la Luz Reus-Medina M; Yang D
    Int J Pharm; 2002 Mar; 235(1-2):129-40. PubMed ID: 11879748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative evaluation of the powder properties and compression behaviour of a new cellulose-based direct compression excipient and Avicel PH-102.
    Reus-Medina M; Lanz M; Kumar V; Leuenberger H
    J Pharm Pharmacol; 2004 Aug; 56(8):951-6. PubMed ID: 15285837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II.
    Rojas J; López A; Gamboa Y; González C; Montoya F
    Chem Pharm Bull (Tokyo); 2011; 59(5):603-7. PubMed ID: 21532198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coprocessing of cellulose II with amorphous silicon dioxide: effect of silicification on the powder and tableting properties.
    Rojas J; Kumar V
    Drug Dev Ind Pharm; 2012 Feb; 38(2):209-26. PubMed ID: 22088231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle.
    Rojas J; Kumar V
    Int J Pharm; 2011 Sep; 416(1):120-8. PubMed ID: 21708237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the disintegration properties of microcrystalline cellulose II and commercial disintegrants.
    Rojas J; Kumar V
    Pharmazie; 2012 Jun; 67(6):500-6. PubMed ID: 22822537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression, compaction, and disintegration properties of low crystallinity celluloses produced using different agitation rates during their regeneration from phosphoric acid solutions.
    Kumar V; Kothari SH; Banker GS
    AAPS PharmSciTech; 2001 May; 2(2):E7. PubMed ID: 14727882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties.
    Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effect of cellulose crystallinity on the moisture absorbability of a pharmaceutical tablet studied by near-infrared spectroscopy.
    Awa K; Shinzawa H; Ozaki Y
    Appl Spectrosc; 2014; 68(6):625-32. PubMed ID: 25014717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose.
    Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of silicification on the tableting performance of cellulose ii: a novel multifunctional excipient.
    Rojas J; Kumar V
    Chem Pharm Bull (Tokyo); 2012; 60(5):603-11. PubMed ID: 22689398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tabletability Modulation Through Surface Engineering.
    Osei-Yeboah F; Sun CC
    J Pharm Sci; 2015 Aug; 104(8):2645-8. PubMed ID: 26059496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting.
    Abdel-Hamid S; Betz G
    Int J Pharm; 2011 Jun; 411(1-2):152-61. PubMed ID: 21497644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ambient moisture on the compaction behavior of microcrystalline cellulose powder undergoing uni-axial compression and roller-compaction: a comparative study using near-infrared spectroscopy.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2301-13. PubMed ID: 16136560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of moisture content, temperature and exposure time on the physical stability of chitosan powder and tablets.
    Viljoen JM; Steenekamp JH; Marais AF; Kotzé AF
    Drug Dev Ind Pharm; 2014 Jun; 40(6):730-42. PubMed ID: 23596972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-destructive assessment of mechanical properties of microcrystalline cellulose compacts.
    Palomäki E; Ehlers H; Antikainen O; Sandler N; Yliruusi J
    Int J Pharm; 2015 Nov; 495(2):633-41. PubMed ID: 26410756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches.
    Odeku OA; Picker-Freyer KM
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1389-406. PubMed ID: 19832640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.