BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 17075931)

  • 1. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability.
    Reetz MT; Carballeira JD; Vogel A
    Angew Chem Int Ed Engl; 2006 Nov; 45(46):7745-51. PubMed ID: 17075931
    [No Abstract]   [Full Text] [Related]  

  • 2. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method.
    Reetz MT; Soni P; Fernández L; Gumulya Y; Carballeira JD
    Chem Commun (Camb); 2010 Dec; 46(45):8657-8. PubMed ID: 20957255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of CotA laccase for increased substrate specificity using Bacillus subtilis spores.
    Gupta N; Farinas ET
    Protein Eng Des Sel; 2010 Aug; 23(8):679-82. PubMed ID: 20551082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of Bacillus subtilis lipase A by use of enantiomeric phosphonate inhibitors: crystal structures and phage display selection.
    Dröge MJ; Boersma YL; van Pouderoyen G; Vrenken TE; Rüggeberg CJ; Reetz MT; Dijkstra BW; Quax WJ
    Chembiochem; 2006 Jan; 7(1):149-57. PubMed ID: 16342303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From structure to function: insights into the catalytic substrate specificity and thermostability displayed by Bacillus subtilis mannanase BCman.
    Yan XX; An XM; Gui LL; Liang DC
    J Mol Biol; 2008 Jun; 379(3):535-44. PubMed ID: 18455734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved catalytic efficiency of endo-beta-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution.
    Lin L; Meng X; Liu P; Hong Y; Wu G; Huang X; Li C; Dong J; Xiao L; Liu Z
    Appl Microbiol Biotechnol; 2009 Mar; 82(4):671-9. PubMed ID: 19050861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostable variants of the recombinant xylanase A from Bacillus subtilis produced by directed evolution show reduced heat capacity changes.
    Ruller R; Deliberto L; Ferreira TL; Ward RJ
    Proteins; 2008 Mar; 70(4):1280-93. PubMed ID: 17876824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution.
    Hoseki J; Okamoto A; Takada N; Suenaga A; Futatsugi N; Konagaya A; Taiji M; Yano T; Kuramitsu S; Kagamiyama H
    Biochemistry; 2003 Dec; 42(49):14469-75. PubMed ID: 14661958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermostabilization of an esterase by alignment-guided focussed directed evolution.
    Jochens H; Aerts D; Bornscheuer UT
    Protein Eng Des Sel; 2010 Dec; 23(12):903-9. PubMed ID: 20947674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.
    Hawwa R; Larsen SD; Ratia K; Mesecar AD
    J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of B. subtilis YjcG characterizing the YjcG-like group of 2H phosphoesterase superfamily.
    Li D; Liu C; Liang YH; Li LF; Su XD
    Proteins; 2008 Aug; 72(3):1071-6. PubMed ID: 18473364
    [No Abstract]   [Full Text] [Related]  

  • 19. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U
    J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed coevolution of stability and catalytic activity in calcium-free subtilisin.
    Strausberg SL; Ruan B; Fisher KE; Alexander PA; Bryan PN
    Biochemistry; 2005 Mar; 44(9):3272-9. PubMed ID: 15736937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.