BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17076265)

  • 1. SR proteins as potential targets for therapy.
    Soret J; Gabut M; Tazi J
    Prog Mol Subcell Biol; 2006; 44():65-87. PubMed ID: 17076265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exonic splicing enhancers contribute to the use of both 3' and 5' splice site usage of rat beta-tropomyosin pre-mRNA.
    Selvakumar M; Helfman DM
    RNA; 1999 Mar; 5(3):378-94. PubMed ID: 10094307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences.
    Schaal TD; Maniatis T
    Mol Cell Biol; 1999 Mar; 19(3):1705-19. PubMed ID: 10022858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
    Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS
    Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing.
    Hertel KJ; Maniatis T
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2651-5. PubMed ID: 10077565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: regulation by hormones and stresses.
    Palusa SG; Ali GS; Reddy AS
    Plant J; 2007 Mar; 49(6):1091-107. PubMed ID: 17319848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of exonic splicing enhancer sequences by the Drosophila splicing repressor RSF1.
    Labourier E; Allemand E; Brand S; Fostier M; Tazi J; Bourbon HM
    Nucleic Acids Res; 1999 Jun; 27(11):2377-86. PubMed ID: 10325428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting serine- and arginine-rich splicing factors to rectify aberrant alternative splicing.
    Li D; Yu W; Lai M
    Drug Discov Today; 2023 Sep; 28(9):103691. PubMed ID: 37385370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers.
    Ibrahim EC; Schaal TD; Hertel KJ; Reed R; Maniatis T
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5002-7. PubMed ID: 15753297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational prediction of splicing regulatory elements shared by Tetrapoda organisms.
    Churbanov A; Vorechovský I; Hicks C
    BMC Genomics; 2009 Nov; 10():508. PubMed ID: 19889216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant serine/arginine-rich proteins: roles in precursor messenger RNA splicing, plant development, and stress responses.
    Reddy AS; Shad Ali G
    Wiley Interdiscip Rev RNA; 2011; 2(6):875-89. PubMed ID: 21766458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors involved in the activation of pre-mRNA splicing from downstream splicing enhancers.
    Achsel T; Shimura Y
    J Biochem; 1996 Jul; 120(1):53-60. PubMed ID: 8864844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exonic splicing enhancer-dependent selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site can be rescued in a cell lacking splicing factor ASF/SF2 through activation of the phosphatidylinositol 3-kinase/Akt pathway.
    Liu X; Mayeda A; Tao M; Zheng ZM
    J Virol; 2003 Feb; 77(3):2105-15. PubMed ID: 12525645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function.
    Keshwani MM; Aubol BE; Fattet L; Ma CT; Qiu J; Jennings PA; Fu XD; Adams JA
    Biochem J; 2015 Mar; 466(2):311-22. PubMed ID: 25529026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of alternative 3' splice site selection by constitutive splicing factors.
    Lin CH; Patton JG
    RNA; 1995 May; 1(3):234-45. PubMed ID: 7489496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-mRNA splicing in the absence of an SR protein RS domain.
    Zhu J; Krainer AR
    Genes Dev; 2000 Dec; 14(24):3166-78. PubMed ID: 11124808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two novel arginine/serine (SR) proteins in maize are differentially spliced and utilize non-canonical splice sites.
    Gupta S; Wang BB; Stryker GA; Zanetti ME; Lal SK
    Biochim Biophys Acta; 2005 May; 1728(3):105-14. PubMed ID: 15780972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of viral splicing elements and cellular RNA binding proteins in regulation of HIV-1 alternative RNA splicing.
    Stoltzfus CM; Madsen JM
    Curr HIV Res; 2006 Jan; 4(1):43-55. PubMed ID: 16454710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation.
    Tripathi V; Ellis JD; Shen Z; Song DY; Pan Q; Watt AT; Freier SM; Bennett CF; Sharma A; Bubulya PA; Blencowe BJ; Prasanth SG; Prasanth KV
    Mol Cell; 2010 Sep; 39(6):925-38. PubMed ID: 20797886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.