BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17076336)

  • 1. Fabrication of biporous low-crystalline apatite based on mannitol dissolution from apatite cement.
    Tajima S; Kishi Y; Oda M; Maruta M; Matsuya S; Ishikawa K
    Dent Mater J; 2006 Sep; 25(3):616-20. PubMed ID: 17076336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of added mannitol on the setting reaction and mechanical strength of apatite cement.
    Shimogoryo R; Eguro T; Kimura E; Maruta M; Matsuya S; Ishikawa K
    Dent Mater J; 2009 Sep; 28(5):627-33. PubMed ID: 19822995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of added sodium alginate on mechanical strength of apatite cement.
    Tajima S; Nishimoto N; Kishi Y; Matsuya S; Ishikawa K
    Dent Mater J; 2004 Sep; 23(3):329-34. PubMed ID: 15510861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of initial hemostatic period on the mechanical strength and transformation of apatite cement.
    Shiga Y; Shimogoryo R; Oka T; Matsuya S; Ishikawa K
    Dent Mater J; 2004 Sep; 23(3):335-9. PubMed ID: 15510862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biopex acquires anti-washout properties by adding sodium alginate into its liquid phase.
    Tanaka S; Kishi T; Shimogoryo R; Matsuya S; Ishikawa K
    Dent Mater J; 2003 Sep; 22(3):301-12. PubMed ID: 14620996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of liquid phase on basic properties of alpha-tricalcium phosphate-based apatite cement.
    Oda M; Takeuchi A; Lin X; Matsuya S; Ishikawa K
    Dent Mater J; 2008 Sep; 27(5):672-7. PubMed ID: 18972783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of the solubilities and dissolution rates of several hydroxyapatites.
    Fulmer MT; Ison IC; Hankermayer CR; Constantz BR; Ross J
    Biomaterials; 2002 Feb; 23(3):751-5. PubMed ID: 11771695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic products of dicalcium phosphate-rich cement with injectability and nondispersibility.
    Ko CL; Chen JC; Hung CC; Wang JC; Tien YC; Chen WC
    Mater Sci Eng C Mater Biol Appl; 2014 Jun; 39():40-6. PubMed ID: 24863195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Dissolution and radio-opacity of apatite cement].
    Shibata S
    Gifu Shika Gakkai Zasshi; 1990 Jun; 17(1):74-93. PubMed ID: 2134774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement.
    Tsuru K; Ruslin ; Maruta M; Matsuya S; Ishikawa K
    J Mater Sci Mater Med; 2015 Oct; 26(10):244. PubMed ID: 26411440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction.
    Guo H; Wei J; Liu CS
    Biomed Mater; 2006 Dec; 1(4):193-7. PubMed ID: 18458405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Allergy of calcium phosphate cement material following skull reconstruction: a case report].
    Mizowaki T; Miyake S; Yoshimoto Y; Matsuura Y; Akiyama S
    No Shinkei Geka; 2013 Apr; 41(4):323-7. PubMed ID: 23542795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.
    Liu C; Chen CW; Ducheyne P
    Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effects of added alpha- and beta- tricalcium phosphate on the basic properties of apatite cement.
    Nakagawa A; Matsuya S; Takeuchi A; Ishikawa K
    Dent Mater J; 2007 May; 26(3):342-7. PubMed ID: 17694742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution of poorly crystalline apatite crystals by osteoclasts determined on artificial thin-film apatite.
    Kim HM; Kim YS; Woo KM; Park SJ; Rey C; Kim Y; Kim JK; Ko JS
    J Biomed Mater Res; 2001 Aug; 56(2):250-6. PubMed ID: 11340596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong and macroporous calcium phosphate cement: Effects of porosity and fiber reinforcement on mechanical properties.
    Xu HH; Quinn JB; Takagi S; Chow LC; Eichmiller FC
    J Biomed Mater Res; 2001 Dec; 57(3):457-66. PubMed ID: 11523041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction suspension plasma sprayed biological-like hydroxyapatite coatings.
    Loszach M; Gitzhofer F
    J Biomater Appl; 2015 Apr; 29(9):1256-71. PubMed ID: 25586411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apatite formation in the reaction-setting mixture of Ca(OH)2--KH2PO4 system.
    Fadeeva IV; Barinov SM; Komlev VS; Fedotov DA; Durisin J; Medvecky L
    J Biomed Mater Res A; 2004 Aug; 70(2):303-8. PubMed ID: 15227675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.