These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17076435)

  • 1. The influence of advance information about target location and visual feedback on movement planning and execution.
    Hansen S; Glazebrook CM; Anson JG; Weeks DJ; Elliott D
    Can J Exp Psychol; 2006 Sep; 60(3):200-8. PubMed ID: 17076435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of visual feedback and prior knowledge about feedback on vertical aiming strategies.
    Elliott D; Dutoy C; Andrew M; Burkitt JJ; Grierson LE; Lyons JL; Hayes SJ; Bennett SJ
    J Mot Behav; 2014; 46(6):433-43. PubMed ID: 25204201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of online control: a developmental perspective.
    McKay SM; Weir PL
    Dev Neuropsychol; 2004; 25(3):299-320. PubMed ID: 15148001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The utilization of visual information in the control of rapid sequential aiming movements.
    Ricker KL; Elliott D; Lyons J; Gauldie D; Chua R; Byblow W
    Acta Psychol (Amst); 1999 Nov; 103(1-2):103-23. PubMed ID: 10555488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The utilization of visual information in the control of reciprocal aiming movements.
    Cullen JD; Helsen WF; Buekers MJ; Hesketh KL; Starkes JL; Elliott D
    Hum Mov Sci; 2001 Dec; 20(6):807-28. PubMed ID: 11792441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.
    Tang R; Whitwell RL; Goodale MA
    Cognition; 2015 May; 138():49-63. PubMed ID: 25704582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual processing is diminished during movement execution.
    Hajj J; Maslovat D; Cressman EK; Germain LS; Carlsen AN
    PLoS One; 2019; 14(3):e0213790. PubMed ID: 30897118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online versus offline processing of visual feedback in the control of movement amplitude.
    Khan MA; Lawrence G; Fourkas A; Franks IM; Elliott D; Pembroke S
    Acta Psychol (Amst); 2003 May; 113(1):83-97. PubMed ID: 12679045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data.
    Khan MA; Franks IM; Elliott D; Lawrence GP; Chua R; Bernier PM; Hansen S; Weeks DJ
    Neurosci Biobehav Rev; 2006; 30(8):1106-21. PubMed ID: 16839604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of visual reafferents during a pointing movement: comparative study between open-loop and closed-loop performances in monkeys before and after unilateral electrolytic lesion of the substantia nigra.
    Viallet F; Trouche E; Beaubaton D; Legallet E
    Exp Brain Res; 1987; 65(2):399-410. PubMed ID: 3556467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The utilization of visual feedback in the control of movement direction: evidence from a video aiming task.
    Khan MA; Lawrence GP; Franks IM; Elliott D
    Motor Control; 2003 Jul; 7(3):290-303. PubMed ID: 12893959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The control of memory-guided reaching movements in peripersonal space.
    Heath M; Westwood DA; Binsted G
    Motor Control; 2004 Jan; 8(1):76-106. PubMed ID: 14973339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contribution of peripheral and central vision in the control of movement amplitude.
    Lawrence GP; Khan MA; Buckolz E; Oldham AR
    Hum Mov Sci; 2006 Jun; 25(3):326-38. PubMed ID: 16616964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in visuomotor control between the upper and lower visual fields.
    Khan MA; Lawrence GP
    Exp Brain Res; 2005 Jul; 164(3):395-8. PubMed ID: 15991032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of visual target information on the online control of movements.
    Sarlegna FR; Mutha PK
    Vision Res; 2015 May; 110(Pt B):144-54. PubMed ID: 25038472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics?
    Mackrous I; Proteau L
    Vision Res; 2015 May; 110(Pt B):223-32. PubMed ID: 24874948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual monitoring of goal-directed aiming movements.
    Brière J; Proteau L
    Q J Exp Psychol (Hove); 2017 Apr; 70(4):736-749. PubMed ID: 26902290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specificity of practice results from differences in movement planning strategies.
    Mackrous I; Proteau L
    Exp Brain Res; 2007 Nov; 183(2):181-93. PubMed ID: 17618424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing visual feedback information for movement control.
    Carlton LG
    J Exp Psychol Hum Percept Perform; 1981 Oct; 7(5):1019-30. PubMed ID: 6457106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.