BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 1707681)

  • 1. Protection from chemical modification of nucleotides in complexes of M1 RNA, the catalytic subunit of RNase P from E coli, and tRNA precursors.
    Knap AK; Wesolowski D; Altman S
    Biochimie; 1990 Nov; 72(11):779-90. PubMed ID: 1707681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a region within M1 RNA of Escherichia coli RNase P important for the location of the cleavage site on a wild-type tRNA precursor.
    Kirsebom LA; Svärd SG
    J Mol Biol; 1993 Jun; 231(3):594-604. PubMed ID: 7685824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physical assay for and kinetic analysis of the interactions between M1 RNA and tRNA precursor substrates.
    Guerrier-Takada C; Altman S
    Biochemistry; 1993 Jul; 32(28):7152-61. PubMed ID: 7688247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial self-cleaving molecules consisting of a tRNA precursor and the catalytic RNA of RNase P.
    Kikuchi Y; Sasaki-Tozawa N; Suzuki K
    Nucleic Acids Res; 1993 Oct; 21(20):4685-9. PubMed ID: 8233817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein synthesis inhibitors and catalytic RNA. Effect of puromycin on tRNA precursor processing by the RNA component of Escherichia coli RNase P.
    Vioque A
    FEBS Lett; 1989 Mar; 246(1-2):137-9. PubMed ID: 2468523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleavage site selection by M1 RNA the catalytic subunit of Escherichia coli RNase P, is influenced by pH.
    Kufel J; Kirsebom LA
    J Mol Biol; 1994 Dec; 244(5):511-21. PubMed ID: 7527466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the processing of the precursor to 4.5 S RNA, a naturally occurring substrate for RNase P from Escherichia coli.
    Peck-Miller KA; Altman S
    J Mol Biol; 1991 Sep; 221(1):1-5. PubMed ID: 1717693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction between Escherichia coli RNase P RNA and the discriminator base results in slow product release.
    Tallsjö A; Kufel J; Kirsebom LA
    RNA; 1996 Apr; 2(4):299-307. PubMed ID: 8634910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific interactions in RNA enzyme-substrate complexes.
    Guerrier-Takada C; Lumelsky N; Altman S
    Science; 1989 Dec; 246(4937):1578-84. PubMed ID: 2480641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Product release is a rate-limiting step during cleavage by the catalytic RNA subunit of Escherichia coli RNase P.
    Tallsjö A; Kirsebom LA
    Nucleic Acids Res; 1993 Jan; 21(1):51-7. PubMed ID: 7680114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific cleavage by metal ion cofactors and inhibitors of M1 RNA, the catalytic subunit of RNase P from Escherichia coli.
    Kazakov S; Altman S
    Proc Natl Acad Sci U S A; 1991 Oct; 88(20):9193-7. PubMed ID: 1718000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Several regions of a tRNA precursor determine the Escherichia coli RNase P cleavage site.
    Svärd SG; Kirsebom LA
    J Mol Biol; 1992 Oct; 227(4):1019-31. PubMed ID: 1279179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion and substrate structure dependence of the processing of tRNA precursors by RNase P and M1 RNA.
    Surratt CK; Carter BJ; Payne RC; Hecht SM
    J Biol Chem; 1990 Dec; 265(36):22513-9. PubMed ID: 2266141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence changes in both flanking sequences of a pre-tRNA influence the cleavage specificity of RNase P.
    Krupp G; Kahle D; Vogt T; Char S
    J Mol Biol; 1991 Feb; 217(4):637-48. PubMed ID: 1706437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme.
    Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME
    Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional working model of M1 RNA, the catalytic RNA subunit of ribonuclease P from Escherichia coli.
    Westhof E; Altman S
    Proc Natl Acad Sci U S A; 1994 May; 91(11):5133-7. PubMed ID: 7515186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage.
    Warnecke JM; Sontheimer EJ; Piccirilli JA; Hartmann RK
    Nucleic Acids Res; 2000 Feb; 28(3):720-7. PubMed ID: 10637323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of the 3'-end of tRNA with ribonuclease P RNA.
    Oh BK; Pace NR
    Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of the 5' leader of pre-tRNA substrates by the active site of ribonuclease P.
    Zahler NH; Christian EL; Harris ME
    RNA; 2003 Jun; 9(6):734-45. PubMed ID: 12756331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.