These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 17077089)
1. Arg-158 is critical in both binding the substrate and stabilizing the transition-state oxyanion for the enzymatic reaction of malonamidase E2. Yun YS; Lee W; Shin S; Oh BH; Choi KY J Biol Chem; 2006 Dec; 281(52):40057-64. PubMed ID: 17077089 [TBL] [Abstract][Full Text] [Related]
2. Identification of active-site residues in Bradyrhizobium japonicum malonamidase E2. Koo HM; Choi SO; Kim HM; Kim YS Biochem J; 2000 Jul; 349(Pt 2):501-7. PubMed ID: 10880349 [TBL] [Abstract][Full Text] [Related]
3. Kinetic, stereochemical, and structural effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase. Harris TK; Czerwinski RM; Johnson WH; Legler PM; Abeygunawardana C; Massiah MA; Stivers JT; Whitman CP; Mildvan AS Biochemistry; 1999 Sep; 38(38):12343-57. PubMed ID: 10493802 [TBL] [Abstract][Full Text] [Related]
4. Crystallization and preliminary X-ray crystallographic analysis of malonamidase E2, an amidase signature family member. Shin S; Lee TH; Koo HM; Kim SY; Lee HS; Kim YS; Oh BH Acta Crystallogr D Biol Crystallogr; 2002 Mar; 58(Pt 3):562-3. PubMed ID: 11856856 [TBL] [Abstract][Full Text] [Related]
5. Structure of malonamidase E2 reveals a novel Ser-cisSer-Lys catalytic triad in a new serine hydrolase fold that is prevalent in nature. Shin S; Lee TH; Ha NC; Koo HM; Kim SY; Lee HS; Kim YS; Oh BH EMBO J; 2002 Jun; 21(11):2509-16. PubMed ID: 12032064 [TBL] [Abstract][Full Text] [Related]
6. X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation. Yasuhira K; Shibata N; Mongami G; Uedo Y; Atsumi Y; Kawashima Y; Hibino A; Tanaka Y; Lee YH; Kato D; Takeo M; Higuchi Y; Negoro S J Biol Chem; 2010 Jan; 285(2):1239-48. PubMed ID: 19889645 [TBL] [Abstract][Full Text] [Related]
7. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Valiña AL; Mazumder-Shivakumar D; Bruice TC Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutations of the active site arginine residues in 4-oxalocrotonate tautomerase on the pKa values of active site residues and on the pH dependence of catalysis. Czerwinski RM; Harris TK; Johnson WH; Legler PM; Stivers JT; Mildvan AS; Whitman CP Biochemistry; 1999 Sep; 38(38):12358-66. PubMed ID: 10493803 [TBL] [Abstract][Full Text] [Related]
9. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism. Nocek B; Reidl C; Starus A; Heath T; Bienvenue D; Osipiuk J; Jedrzejczak R; Joachimiak A; Becker DP; Holz RC Biochemistry; 2018 Feb; 57(5):574-584. PubMed ID: 29272107 [TBL] [Abstract][Full Text] [Related]
10. Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Turner JM; Larsen NA; Basran A; Barbas CF; Bruce NC; Wilson IA; Lerner RA Biochemistry; 2002 Oct; 41(41):12297-307. PubMed ID: 12369817 [TBL] [Abstract][Full Text] [Related]
11. The role of arginine 310 in catalysis and substrate specificity in xanthine dehydrogenase from Rhodobacter capsulatus. Pauff JM; Hemann CF; Jünemann N; Leimkühler S; Hille R J Biol Chem; 2007 Apr; 282(17):12785-90. PubMed ID: 17327224 [TBL] [Abstract][Full Text] [Related]
12. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis. Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850 [TBL] [Abstract][Full Text] [Related]
13. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase. Harris TK; Wu G; Massiah MA; Mildvan AS Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214 [TBL] [Abstract][Full Text] [Related]
14. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
15. Leukotriene A4 hydrolase: identification of a common carboxylate recognition site for the epoxide hydrolase and aminopeptidase substrates. Rudberg PC; Tholander F; Andberg M; Thunnissen MM; Haeggström JZ J Biol Chem; 2004 Jun; 279(26):27376-82. PubMed ID: 15078870 [TBL] [Abstract][Full Text] [Related]
17. Improving the catalytic efficiency of a meta-cleavage product hydrolase (CumD) from Pseudomonas fluorescens IP01. Jun SY; Fushinobu S; Nojiri H; Omori T; Shoun H; Wakagi T Biochim Biophys Acta; 2006 Jul; 1764(7):1159-66. PubMed ID: 16844437 [TBL] [Abstract][Full Text] [Related]
18. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase. Tan D; Harrison T; Hunter GA; Ferreira GC Biochemistry; 1998 Feb; 37(6):1478-84. PubMed ID: 9484217 [TBL] [Abstract][Full Text] [Related]
19. Importance of F1-ATPase residue alpha-Arg-376 for catalytic transition state stabilization. Nadanaciva S; Weber J; Wilke-Mounts S; Senior AE Biochemistry; 1999 Nov; 38(47):15493-9. PubMed ID: 10569931 [TBL] [Abstract][Full Text] [Related]
20. Homology modeling and docking studies of BjGL, a novel (+) gamma-lactamase from Bradyrhizobium japonicum. Song D; Zhu S; Li X; Zheng G J Mol Graph Model; 2014 Feb; 47():1-7. PubMed ID: 24215997 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]