BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17077096)

  • 1. Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions.
    Rajendrakumar P; Biswal AK; Balachandran SM; Srinivasarao K; Sundaram RM
    Bioinformatics; 2007 Jan; 23(1):1-4. PubMed ID: 17077096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of chloroplast DNA microsatellites from Saccharum spp and related species.
    Melotto-Passarin DM; Tambarussi EV; Dressano K; De Martin VF; Carrer H
    Genet Mol Res; 2011 Sep; 10(3):2024-33. PubMed ID: 21948764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico analysis of microsatellites in organellar genomes of major cereals for understanding their phylogenetic relationships.
    Rajendrakumar P; Biswal AK; Balachandran SM; Sundaram RM
    In Silico Biol; 2008; 8(2):87-104. PubMed ID: 18928198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico analysis of SSRs in mitochondrial genomes of plants.
    Kuntal H; Sharma V
    OMICS; 2011 Nov; 15(11):783-9. PubMed ID: 22011339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsatellite analysis in organelle genomes of Chlorophyta.
    Kuntal H; Sharma V; Daniell H
    Bioinformation; 2012; 8(6):255-9. PubMed ID: 22493532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes.
    Nishikawa T; Vaughan DA; Kadowaki K
    Theor Appl Genet; 2005 Feb; 110(4):696-705. PubMed ID: 15650813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Next-generation technologies to determine plastid genome sequences.
    Henry RJ; Rice N; Edwards M; Nock CJ
    Methods Mol Biol; 2014; 1132():39-46. PubMed ID: 24599845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of mononucleotide repeats in sequenced prokaryotic genomes.
    Coenye T; Vandamme P
    DNA Res; 2005; 12(4):221-33. PubMed ID: 16769685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic analysis of AA-genome Oryza species (Poaceae) based on chloroplast, mitochondrial, and nuclear DNA sequences.
    Duan S; Lu B; Li Z; Tong J; Kong J; Yao W; Li S; Zhu Y
    Biochem Genet; 2007 Feb; 45(1-2):113-29. PubMed ID: 17221300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsatellite repeat dynamics in mitochondrial genomes of phytopathogenic fungi: frequency and distribution in the genic and intergenic regions.
    Mahfooz S; Singh P; Maurya DK; Yadav MC; Tahoor A; Sahay H; Srivastava A; Prakash A
    Bioinformation; 2012; 8(23):1171-5. PubMed ID: 23275715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes.
    Lawson MJ; Zhang L
    Genome Biol; 2006; 7(2):R14. PubMed ID: 16507170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats.
    Provan J; Corbett G; McNicol JW; Powell W
    Genome; 1997 Feb; 40(1):104-10. PubMed ID: 9061917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic diversity and evolutionary relationships in genus Oryza revealed by using highly variable regions of chloroplast DNA.
    Kumagai M; Wang L; Ueda S
    Gene; 2010 Aug; 462(1-2):44-51. PubMed ID: 20450965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel rate heterogeneity in chloroplast and mitochondrial genomes of Brazil nut trees (Lecythidaceae) is consistent with lineage effects.
    Soria-Hernanz DF; Braverman JM; Hamilton MB
    Mol Biol Evol; 2008 Jul; 25(7):1282-96. PubMed ID: 18385219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion.
    Yuan Q; Hill J; Hsiao J; Moffat K; Ouyang S; Cheng Z; Jiang J; Buell CR
    Mol Genet Genomics; 2002 Aug; 267(6):713-20. PubMed ID: 12207219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly rearranged and size-variable chloroplast genomes in conifers II clade (cupressophytes): evolution towards shorter intergenic spacers.
    Wu CS; Chaw SM
    Plant Biotechnol J; 2014 Apr; 12(3):344-53. PubMed ID: 24283260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum lycopersicum and comparative analyses with other Solanaceae genomes.
    Daniell H; Lee SB; Grevich J; Saski C; Quesada-Vargas T; Guda C; Tomkins J; Jansen RK
    Theor Appl Genet; 2006 May; 112(8):1503-18. PubMed ID: 16575560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary force of AT-rich repeats to trap genomic and episomal DNAs into the rice genome: lessons from endogenous pararetrovirus.
    Liu R; Koyanagi KO; Chen S; Kishima Y
    Plant J; 2012 Dec; 72(5):817-28. PubMed ID: 22900922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide searching of single-nucleotide polymorphisms among eight distantly and closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff.).
    Monna L; Ohta R; Masuda H; Koike A; Minobe Y
    DNA Res; 2006 Apr; 13(2):43-51. PubMed ID: 16766512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus.
    Raubeson LA; Peery R; Chumley TW; Dziubek C; Fourcade HM; Boore JL; Jansen RK
    BMC Genomics; 2007 Jun; 8():174. PubMed ID: 17573971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.