These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 1707806)
1. Scalp potentials following sudden coherence and discoherence of binaural noise and change in the inter-aural time difference: a specific binaural evoked potential or a "mismatch" response? Jones SJ; Pitman JR; Halliday AM Electroencephalogr Clin Neurophysiol; 1991; 80(2):146-54. PubMed ID: 1707806 [TBL] [Abstract][Full Text] [Related]
2. Memory-dependent auditory evoked potentials to change in the binaural interaction of noise signals. Jones SJ Electroencephalogr Clin Neurophysiol; 1991; 80(5):399-405. PubMed ID: 1716565 [TBL] [Abstract][Full Text] [Related]
3. Binaural interaction in the brain-stem auditory evoked potential: evidence for a delay line coincidence detection mechanism. Jones SJ; Van der Poel JC Electroencephalogr Clin Neurophysiol; 1990; 77(3):214-24. PubMed ID: 1691974 [TBL] [Abstract][Full Text] [Related]
4. Infant Cortical Auditory Evoked Potentials to Lateralized Noise Shifts Produced by Changes in Interaural Time Difference. Small SA; Ishida IM; Stapells DR Ear Hear; 2017; 38(1):94-102. PubMed ID: 27505221 [TBL] [Abstract][Full Text] [Related]
5. The timing of the processes underlying lateralization: psychophysical and evoked potential measures. McEvoy LK; Picton TW; Champagne SC Ear Hear; 1991 Dec; 12(6):389-98. PubMed ID: 1797606 [TBL] [Abstract][Full Text] [Related]
6. AEPs at the onset and offset of repetitive sound modulation, due to mismatch with the contents of an auditory sensory store. Jones SJ Electroencephalogr Clin Neurophysiol; 1992; 84(2):149-56. PubMed ID: 1372229 [TBL] [Abstract][Full Text] [Related]
7. Equivalent dipoles of the binaural interaction components and their comparison with binaurally evoked human auditory 40 Hz steady-state evoked potentials. Zaaroor M; Bleich N; Mittelman N; Pratt H Ear Hear; 2003 Jun; 24(3):248-56. PubMed ID: 12799547 [TBL] [Abstract][Full Text] [Related]
8. Binaural interaction in human auditory brainstem evoked potentials. Wrege KS; Starr A Arch Neurol; 1981 Sep; 38(9):572-80. PubMed ID: 7271536 [TBL] [Abstract][Full Text] [Related]
9. Electrophysiological and psychophysical asymmetries in sensitivity to interaural correlation gaps and implications for binaural integration time. Lüddemann H; Kollmeier B; Riedel H Hear Res; 2016 Feb; 332():170-187. PubMed ID: 26526276 [TBL] [Abstract][Full Text] [Related]
11. Binaural interaction in the auditory middle latency response of the guinea pig. Ozdamar O; Kraus N; Grossmann J Electroencephalogr Clin Neurophysiol; 1986 May; 63(5):476-83. PubMed ID: 2420563 [TBL] [Abstract][Full Text] [Related]
12. Scalp distribution of the auditory evoked brainstem potentials in the guinea pig during monaural and binaural stimulation. Dum N; Schmidt U; von Wedel H Hear Res; 1981 Nov; 5(2-3):271-84. PubMed ID: 7309642 [TBL] [Abstract][Full Text] [Related]
13. Click spatial position influences middle latency auditory evoked potentials (MAEPs) in humans. Woods DL; Clayworth CC Electroencephalogr Clin Neurophysiol; 1985 Feb; 60(2):122-9. PubMed ID: 2578363 [TBL] [Abstract][Full Text] [Related]
14. Intra-ponto-mesencephalic recording of binaural interaction in human brain-stem auditory evoked potentials. Curio G; Weigel K Electroencephalogr Clin Neurophysiol; 1990; 77(1):19-27. PubMed ID: 1688781 [TBL] [Abstract][Full Text] [Related]
15. The normal scalp topography of the middle latency auditory evoked potential Pa component following monaural click stimulation. Jacobson GP; Grayson AS Brain Topogr; 1988; 1(1):29-36. PubMed ID: 3274960 [TBL] [Abstract][Full Text] [Related]
16. Scalp potentials to pitch change in rapid tone sequences. A correlate of sequential stream segregation. Hung J; Jones SJ; Vaz Pato M Exp Brain Res; 2001 Sep; 140(1):56-65. PubMed ID: 11500798 [TBL] [Abstract][Full Text] [Related]
17. Auditory evoked responses to binaural beat illusion: stimulus generation and the derivation of the Binaural Interaction Component (BIC). Ozdamar O; Bohorquez J; Mihajloski T; Yavuz E; Lachowska M Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():830-3. PubMed ID: 22254439 [TBL] [Abstract][Full Text] [Related]
18. Human middle-latency auditory evoked potentials: vertex and temporal components. Cacace AT; Satya-Murti S; Wolpaw JR Electroencephalogr Clin Neurophysiol; 1990; 77(1):6-18. PubMed ID: 1688786 [TBL] [Abstract][Full Text] [Related]
19. Binaural beat technology in humans: a pilot study to assess neuropsychologic, physiologic, and electroencephalographic effects. Wahbeh H; Calabrese C; Zwickey H; Zajdel D J Altern Complement Med; 2007 Mar; 13(2):199-206. PubMed ID: 17388762 [TBL] [Abstract][Full Text] [Related]
20. Effect of stimulus mode on middle latency auditory evoked potentials in humans. Versino M; Bergamaschi R; Romani A; Callieco R; Canegalli F; Cosi V Boll Soc Ital Biol Sper; 1991 Apr; 67(4):395-402. PubMed ID: 1910742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]