BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 17078551)

  • 1. Effect of Vicia faba L. var. minor and Sulla coronaria (L.) Medik associated with plant growth-promoting bacteria on lettuce cropping system and heavy metal phytoremediation under field conditions.
    Saadani O; Jebara SH; Fatnassi IC; Chiboub M; Mannai K; Zarrad I; Jebara M
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8125-8135. PubMed ID: 30693447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of arbuscular mycorrhizal symbiosis,
    Alinejad Z; Abtahi SA; Jafarinia M; Yasrebi J
    Int J Phytoremediation; 2024; 26(2):250-262. PubMed ID: 37469110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation and transferreing for impacts on Cd and Pb by aphid consumption of the broad bean, Vicia faba L, in soil heavy metal pollution.
    Yin Z; Xie Y; Wang S; Li Q; Wan S; Chen L; Dai X; Wang R; Desneux N; Zhi J; Tang B
    Chemosphere; 2024 Jul; 360():142429. PubMed ID: 38797206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis.
    Lingua G; Bona E; Todeschini V; Cattaneo C; Marsano F; Berta G; Cavaletto M
    PLoS One; 2012; 7(6):e38662. PubMed ID: 22761694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of arbuscular mycorrhizal (G. etunicatum) fungus on antioxidant enzymes activity under zinc toxicity in lettuce plants.
    Farshian S; Khara J; Parviz M
    Pak J Biol Sci; 2007 Jun; 10(11):1865-9. PubMed ID: 19086552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of petroleum-derived substances on life history traits of black bean aphid (Aphis fabae Scop.) and on the growth and chemical composition of broad bean.
    Rusin M; Gospodarek J; Nadgórska-Socha A; Barczyk G
    Ecotoxicology; 2017 Apr; 26(3):308-319. PubMed ID: 28144803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin homeostasis in plant responses to heavy metal stress.
    Moeen-Ud-Din M; Yang S; Wang J
    Plant Physiol Biochem; 2023 Dec; 205():108210. PubMed ID: 38006792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture.
    Charagh S; Hui S; Wang J; Raza A; Zhou L; Xu B; Zhang Y; Sheng Z; Tang S; Hu S; Hu P
    Physiol Plant; 2024; 176(2):e14226. PubMed ID: 38410873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of localised nitrogen supply and relevance for root growth of Vicia faba ('Fuego') and Hordeum vulgare ('Marthe') in soil.
    Blaser SRGA; Koebernick N; Spott O; Thiel E; Vetterlein D
    Sci Rep; 2020 Sep; 10(1):15776. PubMed ID: 32978408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal stress and some mechanisms of plant defense response.
    Emamverdian A; Ding Y; Mokhberdoran F; Xie Y
    ScientificWorldJournal; 2015; 2015():756120. PubMed ID: 25688377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview.
    Jalil S; Nazir MM; Ali Q; Zulfiqar F; Moosa A; Altaf MA; Zaid A; Nafees M; Yong JWH; Jin X
    Funct Plant Biol; 2023 Nov; 50(11):870-888. PubMed ID: 37598713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impacts of nano-acetamiprid pesticide on faba bean root metabolic response and soil health.
    Ding Y; Tao M; Xu L; Wang C; Wang J; Zhao C; Xiao Z; Wang Z
    Sci Total Environ; 2024 Jun; 927():171976. PubMed ID: 38547984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The microPIXE technique to understand the distribution of heavy metals in arbuscular mycorrhizal symbiosis.
    Statello M; Colombo RP; de la Fournière EM; Debray ME; Godeas AM; Silvani VA
    Rev Argent Microbiol; 2024 May; ():. PubMed ID: 38749858
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of Inoculation with Stress-Tolerant Rhizobia on the Response of Alfalfa (
    Pacheco-Insausti MC; Ponce IT; Quiñones MA; Pedranzani HE; Pueyo JJ
    Plants (Basel); 2023 Nov; 12(23):. PubMed ID: 38068608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glomus mosseae enhances root growth and Cu and Pb acquisition of upland rice (Oryza sativa L.) in contaminated soils.
    Lin A; Zhang X; Yang X
    Ecotoxicology; 2014 Dec; 23(10):2053-61. PubMed ID: 25326862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba.
    Zhang XH; Lin AJ; Chen BD; Wang YS; Smith SE; Smith FA
    J Environ Sci (China); 2006; 18(4):721-6. PubMed ID: 17078551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L.
    Citterio S; Prato N; Fumagalli P; Aina R; Massa N; Santagostino A; Sgorbati S; Berta G
    Chemosphere; 2005 Mar; 59(1):21-9. PubMed ID: 15698640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils.
    Liang CC; Li T; Xiao YP; Liu MJ; Zhang HB; Zhao ZW
    Int J Phytoremediation; 2009; 11(8):692-703. PubMed ID: 19810598
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.