These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 17078633)
1. Density functional calculations of 3He chemical shift in endohedral helium fullerenes: Neutral, anionic, and di-helium species. Straka M; Vaara J J Phys Chem A; 2006 Nov; 110(44):12338-41. PubMed ID: 17078633 [TBL] [Abstract][Full Text] [Related]
2. Toward calculations of the 129Xe chemical shift in Xe@C60 at experimental conditions: relativity, correlation, and dynamics. Straka M; Lantto P; Vaara J J Phys Chem A; 2008 Mar; 112(12):2658-68. PubMed ID: 18303877 [TBL] [Abstract][Full Text] [Related]
3. Two helium atoms inside fullerenes: probing the internal magnetic field in C60(6-) and C70(6-). Sternfeld T; Hoffman RE; Saunders M; Cross RJ; Syamala MS; Rabinovitz M J Am Chem Soc; 2002 Jul; 124(30):8786-7. PubMed ID: 12137518 [TBL] [Abstract][Full Text] [Related]
4. 3He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds. Radula-Janik K; Kupka T Magn Reson Chem; 2015 Feb; 53(2):103-9. PubMed ID: 25228253 [TBL] [Abstract][Full Text] [Related]
5. Is this a chemical bond? A theoretical study of Ng2@C60 (Ng=He, Ne, Ar, Kr, Xe). Krapp A; Frenking G Chemistry; 2007; 13(29):8256-70. PubMed ID: 17639524 [TBL] [Abstract][Full Text] [Related]
7. Accurate calculation, prediction, and assignment of 3He NMR chemical shifts of helium-3-encapsulated fullerenes and fullerene derivatives. Wang GW; Zhang XH; Zhan H; Guo QX; Wu YD J Org Chem; 2003 Aug; 68(17):6732-8. PubMed ID: 12919041 [TBL] [Abstract][Full Text] [Related]
8. 3He NMR: from free gas to its encapsulation in fullerene. Kupka T; Stachów M; Stobiński L; Kaminský J Magn Reson Chem; 2013 Aug; 51(8):463-8. PubMed ID: 23737362 [TBL] [Abstract][Full Text] [Related]
9. Rational synthesis, enrichment, and (13)C NMR spectra of endohedral C(60) and C(70) encapsulating a helium atom. Morinaka Y; Tanabe F; Murata M; Murata Y; Komatsu K Chem Commun (Camb); 2010 Jul; 46(25):4532-4. PubMed ID: 20461258 [TBL] [Abstract][Full Text] [Related]
10. Dynamics and magnetic resonance properties of Sc3C2@C80 and its monoanion. Taubert S; Straka M; Pennanen TO; Sundholm D; Vaara J Phys Chem Chem Phys; 2008 Dec; 10(47):7158-68. PubMed ID: 19039350 [TBL] [Abstract][Full Text] [Related]
11. Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc3N@C80-, and spatial spin-charge separation as a general principle for anions of endohedral fullerenes with metal-localized lowest unoccupied molecular orbitals. Popov AA; Dunsch L J Am Chem Soc; 2008 Dec; 130(52):17726-42. PubMed ID: 19035640 [TBL] [Abstract][Full Text] [Related]
12. Theoretical predictions of nuclear magnetic resonance parameters in a novel organo-xenon species: chemical shifts and nuclear quadrupole couplings in HXeCCH. Straka M; Lantto P; Räsänen M; Vaara J J Chem Phys; 2007 Dec; 127(23):234314. PubMed ID: 18154389 [TBL] [Abstract][Full Text] [Related]
13. The essential role of symmetry in understanding Vícha J; Vaara J; Straka M Phys Chem Chem Phys; 2023 Apr; 25(15):10620-10627. PubMed ID: 37000500 [TBL] [Abstract][Full Text] [Related]
14. A density functional theory study of shake-up satellites in photoemission of carbon fullerenes and nanotubes. Gao B; Wu Z; Luo Y J Chem Phys; 2008 Jun; 128(23):234704. PubMed ID: 18570516 [TBL] [Abstract][Full Text] [Related]
15. Endohedral and external through-space shieldings of the fullerenes c50, c60, c60(-6), c70, and c70(-6)-visualization of (anti)aromaticity and their effects on the chemical shifts of encapsulated nuclei. Kleinpeter E; Klod S; Koch A J Org Chem; 2008 Feb; 73(4):1498-507. PubMed ID: 18197684 [TBL] [Abstract][Full Text] [Related]
16. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory. Kussmann J; Ochsenfeld C J Chem Phys; 2007 Aug; 127(5):054103. PubMed ID: 17688330 [TBL] [Abstract][Full Text] [Related]
17. Structures and magnetic properties of mono-doped fullerenes C59Xn and C59X(6mn)m (X=Bm, N+, P+, As+, Si): isoelectronic analogues of C60 and C60(6m). Jiao H; Chen Z; Hirsch A; Thiel W J Mol Model; 2003 Feb; 9(1):34-8. PubMed ID: 12638009 [TBL] [Abstract][Full Text] [Related]
18. Heuristic overlap-exchange model of noble gas chemical shifts. Adrian FJ J Chem Phys; 2004 May; 120(18):8469-75. PubMed ID: 15267772 [TBL] [Abstract][Full Text] [Related]
19. Helium mediated deposition: modeling the He-TiO2(110)-(1×1) interaction potential and application to the collision of a helium droplet from density functional calculations. Aguirre NF; Mateo D; Mitrushchenkov AO; Pi M; de Lara-Castells MP J Chem Phys; 2012 Mar; 136(12):124703. PubMed ID: 22462884 [TBL] [Abstract][Full Text] [Related]
20. Fast semiempirical calculations for nuclear magnetic resonance chemical shifts: a divide-and-conquer approach. Wang B; Brothers EN; van der Vaart A; Merz KM J Chem Phys; 2004 Jun; 120(24):11392-400. PubMed ID: 15268173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]