BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 17078816)

  • 21. Organization of the archaeal MCM complex on DNA and implications for the helicase mechanism.
    McGeoch AT; Trakselis MA; Laskey RA; Bell SD
    Nat Struct Mol Biol; 2005 Sep; 12(9):756-62. PubMed ID: 16116441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nop5 interacts with the archaeal RNA exosome.
    Gauernack AS; Lassek C; Hou L; Dzieciolowski J; Evguenieva-Hackenberg E; Klug G
    FEBS Lett; 2017 Dec; 591(24):4039-4048. PubMed ID: 29159940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo and in vitro studies of RNA degrading activities in Archaea.
    Evguenieva-Hackenberg E; Wagner S; Klug G
    Methods Enzymol; 2008; 447():381-416. PubMed ID: 19161853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural framework for the mechanism of archaeal exosomes in RNA processing.
    Büttner K; Wenig K; Hopfner KP
    Mol Cell; 2005 Nov; 20(3):461-71. PubMed ID: 16285927
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system.
    Zuo Z; Rodgers CJ; Mikheikin AL; Trakselis MA
    J Mol Biol; 2010 Apr; 397(3):664-76. PubMed ID: 20122937
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts.
    Märtens B; Hou L; Amman F; Wolfinger MT; Evguenieva-Hackenberg E; Bläsi U
    Nucleic Acids Res; 2017 Jul; 45(13):7938-7949. PubMed ID: 28520934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA-quality control by the exosome.
    Houseley J; LaCava J; Tollervey D
    Nat Rev Mol Cell Biol; 2006 Jul; 7(7):529-39. PubMed ID: 16829983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of chromatin and single strand binding proteins on the activity of an archaeal MCM.
    Marsh VL; McGeoch AT; Bell SD
    J Mol Biol; 2006 Apr; 357(5):1345-50. PubMed ID: 16490210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endonucleolytic RNA cleavage by a eukaryotic exosome.
    Lebreton A; Tomecki R; Dziembowski A; Séraphin B
    Nature; 2008 Dec; 456(7224):993-6. PubMed ID: 19060886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insights into the mechanism of progressive RNA degradation by the archaeal exosome.
    Navarro MV; Oliveira CC; Zanchin NI; Guimarães BG
    J Biol Chem; 2008 May; 283(20):14120-31. PubMed ID: 18353775
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner.
    Richards JD; Cubeddu L; Roberts J; Liu H; White MF
    J Mol Biol; 2008 Feb; 376(3):634-44. PubMed ID: 18177890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two unique membrane-bound AAA proteins from Sulfolobus solfataricus.
    Serek-Heuberger J; Hobel CF; Dunin-Horkawicz S; Rockel B; Martin J; Lupas AN
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):118-22. PubMed ID: 19143614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Divergent functions of multiple eukaryote-like Orc1/Cdc6 proteins on modulating the loading of the MCM helicase onto the origins of the hyperthermophilic archaeon Sulfolobus solfataricus P2.
    Jiang PX; Wang J; Feng Y; He ZG
    Biochem Biophys Res Commun; 2007 Sep; 361(3):651-8. PubMed ID: 17673179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Leishmania tarentolae exosome: purification and structural analysis by electron microscopy.
    Cristodero M; Böttcher B; Diepholz M; Scheffzek K; Clayton C
    Mol Biochem Parasitol; 2008 May; 159(1):24-9. PubMed ID: 18279979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.
    Audin MJ; Wurm JP; Cvetkovic MA; Sprangers R
    Nucleic Acids Res; 2016 Apr; 44(6):2962-73. PubMed ID: 26837575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell and molecular biology of the exosome: how to make or break an RNA.
    Schilders G; van Dijk E; Raijmakers R; Pruijn GJ
    Int Rev Cytol; 2006; 251():159-208. PubMed ID: 16939780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R.
    Portnoy V; Schuster G
    Nucleic Acids Res; 2006; 34(20):5923-31. PubMed ID: 17065466
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation.
    He ZG; Feng Y; Wang J; Jiang PX
    Arch Biochem Biophys; 2008 Mar; 471(2):176-83. PubMed ID: 18237540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The expanding world of small RNAs in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Zago MA; Dennis PP; Omer AD
    Mol Microbiol; 2005 Mar; 55(6):1812-28. PubMed ID: 15752202
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solution structure and calcium binding of protein SSO6904 from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Feng Y; Yao H; Wang J
    Proteins; 2010 Feb; 78(2):474-9. PubMed ID: 19768683
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.