BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 17079028)

  • 1. Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus.
    Seo JS; Lee KW; Rhee JS; Hwang DS; Lee YM; Park HG; Ahn IY; Lee JS
    Aquat Toxicol; 2006 Dec; 80(3):281-9. PubMed ID: 17079028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120.
    Jiang F; Hellman U; Sroga GE; Bergman B; Mannervik B
    J Biol Chem; 1995 Sep; 270(39):22882-9. PubMed ID: 7559423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential redox regulation by glutathione of glutathione reductase and CuZn-superoxide dismutase gene expression in Pinus sylvestris L. needles.
    Wingsle G; Karpinski S
    Planta; 1996; 198(1):151-7. PubMed ID: 8580767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli.
    Kim IS; Shin SY; Kim YS; Kim HY; Yoon HS
    Mol Cells; 2009 Nov; 28(5):479-87. PubMed ID: 19936628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase.
    Sato I; Shimizu M; Hoshino T; Takaya N
    J Biol Chem; 2009 Mar; 284(12):8042-53. PubMed ID: 19171936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene knockout of glutathione reductase results in increased sensitivity to heavy metals in
    Shi Y; Wu W; Yang Y; Liu X; Lin J; Liu X; Lin J; Pang X
    Front Microbiol; 2023; 14():1250330. PubMed ID: 37799601
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of salinity on the chronic toxicity of 4-methylbenzylidene camphor (4-MBC) in the marine copepod Tigriopus japonicus.
    Hong H; Wang J; Shi D
    Aquat Toxicol; 2021 Jan; 232():105742. PubMed ID: 33460951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis.
    Kang S; Ahn DH; Lee JH; Lee SG; Shin SC; Lee J; Min GS; Lee H; Kim HW; Kim S; Park H
    Gigascience; 2017 Jan; 6(1):1-9. PubMed ID: 28369352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. Pekinensis.
    Lee H; Won SH; Lee BH; Park HD; Chung WI; Jo J
    Mol Cells; 2002 Apr; 13(2):245-51. PubMed ID: 12018846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from
    Deng P; Tan X; Wu Y; Bai Q; Jia Y; Xiao H
    Exp Ther Med; 2015 Mar; 9(3):795-800. PubMed ID: 25667630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of microplastic toxicity in accordance with different sizes and exposure times in the marine copepod Tigriopus japonicus.
    Choi JS; Hong SH; Park JW
    Mar Environ Res; 2020 Jan; 153():104838. PubMed ID: 31733910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia tolerance, but not low pH tolerance, is associated with a latitudinal cline across populations of Tigriopus californicus.
    Deconinck A; Willett CS
    PLoS One; 2022; 17(10):e0276635. PubMed ID: 36301968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of mannitol-2-dehydrogenase in Saccharina japonica: evidence for a new polyol-specific long-chain dehydrogenases/reductase.
    Shao Z; Zhang P; Li Q; Wang X; Duan D
    PLoS One; 2014; 9(5):e97935. PubMed ID: 24830763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of a manganese superoxide dismutase from Avicennia marina: insights into its role in salt, hydrogen peroxide, and heavy metal tolerance.
    Abedi H; Shahpiri A
    Sci Rep; 2024 Jan; 14(1):406. PubMed ID: 38172216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular characterization and mRNA expression of grp78 and hsp90A in the estuarine copepod Eurytemora affinis.
    Xuereb B; Forget-Leray J; Souissi S; Glippa O; Devreker D; Lesueur T; Marie S; Danger JM; Boulangé-Lecomte C
    Cell Stress Chaperones; 2012 Jul; 17(4):457-472. PubMed ID: 22302500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Fitness and Elevated Oxidative Stress in the Marine Copepod
    Chen H; Wang J; Zhuang Y; Yu W; Liu G
    Antioxidants (Basel); 2022 Nov; 11(11):. PubMed ID: 36421485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification and function analysis of HMAD gene family in cotton (Gossypium spp.).
    Wang Q; Lu X; Chen X; Zhao L; Han M; Wang S; Zhang Y; Fan Y; Ye W
    BMC Plant Biol; 2021 Aug; 21(1):386. PubMed ID: 34416873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus.
    Fu Y; Mason AS; Zhang Y; Lin B; Xiao M; Fu D; Yu H
    BMC Plant Biol; 2019 Dec; 19(1):570. PubMed ID: 31856702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of oxidative stress on sex-specific gene expression in the copepod Tigriopus californicus revealed by single individual RNA-seq.
    Li N; Arief N; Edmands S
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep; 31():100608. PubMed ID: 31325755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.).
    Wang J; Zhong X; Zhu K; Lv J; Lv X; Li F; Shi Z
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):19012-19027. PubMed ID: 29721793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.