These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17079029)

  • 61. Predicting the toxic effects of Cu and Cd on Chlamydomonas reinhardtii with a DEBtox model.
    Xie M; Sun Y; Feng J; Gao Y; Zhu L
    Aquat Toxicol; 2019 May; 210():106-116. PubMed ID: 30844631
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Contrasting ecotoxicity effects of zinc on growth and photosynthesis in a neutrophilic alga (Chlamydomonas reinhardtii) and an extremophilic alga (Cyanidium caldarium).
    Mikulic P; Beardall J
    Chemosphere; 2014 Oct; 112():402-11. PubMed ID: 25048933
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of alginate oligomer on the expression of cell cycle- and stress-related genes in Chlamydomonas reinhardtii.
    Ueno M; Nishiguchi T; Takeshita S; Yamaguchi K; Oda T
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1254-1260. PubMed ID: 28485218
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Comparison of the phenylenediamine isomers bioactivation by the green alga Chlamydomonas reinhardtii.
    Vlcková V; Slaninová M; Miadoková E; Podstavková S; Závodná M; Vlcek D
    J Environ Pathol Toxicol Oncol; 1999; 18(3):191-201. PubMed ID: 15281232
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In situ evaluation of cadmium biomarkers in green algae.
    Simon DF; Davis TA; Tercier-Waeber ML; England R; Wilkinson KJ
    Environ Pollut; 2011 Oct; 159(10):2630-6. PubMed ID: 21696872
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Copper status of exposed microorganisms influences susceptibility to metallic nanoparticles.
    Reyes VC; Spitzmiller MR; Hong-Hermesdorf A; Kropat J; Damoiseaux RD; Merchant SS; Mahendra S
    Environ Toxicol Chem; 2016 May; 35(5):1148-58. PubMed ID: 26387648
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Paralytic shellfish toxins inhibit copper uptake in Chlamydomonas reinhardtii.
    Cusick KD; Wetzel RK; Minkin SC; Dodani SC; Wilhelm SW; Sayler GS
    Environ Toxicol Chem; 2013 Jun; 32(6):1388-95. PubMed ID: 23423950
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Isolation and characterization of a stress-responsive gene encoding a CHRD domain-containing protein from a halotolerant green alga.
    Ishinishi R; Matsuura H; Tanaka S; Nozawa S; Tanada K; Kawashita N; Fujiyama K; Miyasaka H; Hirata K
    Gene; 2018 Jan; 640():14-20. PubMed ID: 29017964
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Assembly,function, and dynamics of the photosynthetic machinery in Chlamydomonas reinhardtii.
    Rochaix JD
    Plant Physiol; 2001 Dec; 127(4):1394-8. PubMed ID: 11743080
    [No Abstract]   [Full Text] [Related]  

  • 70. Species-species interactions modulate copper toxicity under different visible light conditions.
    Cheloni G; Gagnaux V; Slaveykova VI
    Ecotoxicol Environ Saf; 2019 Apr; 170():771-777. PubMed ID: 30593990
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers.
    Jamers A; De Coen W
    Environ Toxicol Chem; 2010 Apr; 29(4):893-901. PubMed ID: 20821519
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Discovery of CRR1-targeted copper deficiency response in
    Wang S; Lv J; Zhang S
    Nanotoxicology; 2019 May; 13(4):447-454. PubMed ID: 30704326
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ni induces the CRR1-dependent regulon revealing overlap and distinction between hypoxia and Cu deficiency responses in Chlamydomonas reinhardtii.
    Blaby-Haas CE; Castruita M; Fitz-Gibbon ST; Kropat J; Merchant SS
    Metallomics; 2016 Jul; 8(7):679-91. PubMed ID: 27172123
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Highly Time-Resolved Metabolic Reprogramming toward Differential Levels of Phosphate in
    Jang CH; Lee G; Park YC; Kim KH; Lee DY
    J Microbiol Biotechnol; 2017 Jun; 27(6):1150-1156. PubMed ID: 28372038
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway.
    Quinn JM; Eriksson M; Moseley JL; Merchant S
    Plant Physiol; 2002 Feb; 128(2):463-71. PubMed ID: 11842150
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure.
    von Moos N; Maillard L; Slaveykova VI
    Aquat Toxicol; 2015 Apr; 161():267-75. PubMed ID: 25731685
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii.
    Ledford HK; Chin BL; Niyogi KK
    Eukaryot Cell; 2007 Jun; 6(6):919-30. PubMed ID: 17435007
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Changes in C uptake in populations of Chlamydomonas reinhardtii selected at high CO2.
    Collins S; Sültemeyer D; Bell G
    Plant Cell Environ; 2006 Sep; 29(9):1812-9. PubMed ID: 16913870
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver.
    Pillai S; Behra R; Nestler H; Suter MJ; Sigg L; Schirmer K
    Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3490-5. PubMed ID: 24550482
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor.
    Pottier L; Pruvost J; Deremetz J; Cornet JF; Legrand J; Dussap CG
    Biotechnol Bioeng; 2005 Sep; 91(5):569-82. PubMed ID: 16025533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.