These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17079043)

  • 1. Production of xylitol by metabolically engineered strains of Bacillus subtilis.
    Povelainen M; Miasnikov AN
    J Biotechnol; 2007 Jan; 128(1):24-31. PubMed ID: 17079043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of D-arabitol by a metabolic engineered strain of Bacillus subtilis.
    Povelainen M; Miasnikov AN
    Biotechnol J; 2006 Feb; 1(2):214-9. PubMed ID: 16892251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process.
    Cheng H; Lv J; Wang H; Wang B; Li Z; Deng Z
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3539-52. PubMed ID: 24419799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the sugar alcohol-producing yeast Pichia anomala.
    Zhang G; Lin Y; He P; Li L; Wang Q; Ma Y
    J Ind Microbiol Biotechnol; 2014 Jan; 41(1):41-8. PubMed ID: 24170383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H
    Kim H; Lee HS; Park H; Lee DH; Boles E; Chung D; Park YC
    Enzyme Microb Technol; 2017 Dec; 107():7-14. PubMed ID: 28899489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentitol metabolism in Lactobacillus casei.
    London J; Chace NM
    J Bacteriol; 1979 Dec; 140(3):949-54. PubMed ID: 118163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose.
    Mayer G; Kulbe KD; Nidetzky B
    Appl Biochem Biotechnol; 2002; 98-100():577-89. PubMed ID: 12018283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli.
    Sakakibara Y; Saha BC; Taylor P
    J Biosci Bioeng; 2009 May; 107(5):506-11. PubMed ID: 19393548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD⁺-dependent xylitol dehydrogenase (xdhA) and L-arabitol-4-dehydrogenase (ladA) deletion mutants of Aspergillus oryzae for improved xylitol production.
    Mahmud A; Hattori K; Hongwen C; Kitamoto N; Suzuki T; Nakamura K; Takamizawa K
    Biotechnol Lett; 2013 May; 35(5):769-77. PubMed ID: 23436125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous xylose pathway in Saccharomyces cerevisiae.
    Toivari MH; Salusjärvi L; Ruohonen L; Penttilä M
    Appl Environ Microbiol; 2004 Jun; 70(6):3681-6. PubMed ID: 15184173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol dehydrogenase activities and xylitol production during batch fermentation of sugarcane bagasse hydrolysate.
    da Silva DD; das Graças de Almeida Felipe M; de Mancilha IM; da Silva SS
    Appl Biochem Biotechnol; 2005; 121-124():427-37. PubMed ID: 15917619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus.
    Yamasaki-Yashiki S; Komeda H; Hoshino K; Asano Y
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1612-1618. PubMed ID: 28471330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Bacillus subtilis for production of D-lactic acid.
    Awasthi D; Wang L; Rhee MS; Wang Q; Chauliac D; Ingram LO; Shanmugam KT
    Biotechnol Bioeng; 2018 Feb; 115(2):453-463. PubMed ID: 28986980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of bifunctional enzymes with xylose reductase and xylitol dehydrogenase activity in Saccharomyces cerevisiae alters product formation during xylose fermentation.
    Anderlund M; Rådström P; Hahn-Hägerdal B
    Metab Eng; 2001 Jul; 3(3):226-35. PubMed ID: 11461145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Bacillus subtilis for acetoin production from glucose and xylose mixtures.
    Chen T; Liu WX; Fu J; Zhang B; Tang YJ
    J Biotechnol; 2013 Dec; 168(4):499-505. PubMed ID: 24120578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Jin YS; Jeffries TW
    Appl Biochem Biotechnol; 2003; 105 -108():277-86. PubMed ID: 12721451
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Coullon H; Rifflet A; Wheeler R; Janoir C; Boneca IG; Candela T
    J Biol Chem; 2018 Nov; 293(47):18040-18054. PubMed ID: 30266804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.