BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17079215)

  • 1. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells.
    Mambula SS; Calderwood SK
    Int J Hyperthermia; 2006 Nov; 22(7):575-85. PubMed ID: 17079215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunogenicity of 56 degrees C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells.
    Brusa D; Migliore E; Garetto S; Simone M; Matera L
    Prostate; 2009 Sep; 69(12):1343-52. PubMed ID: 19496055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes.
    Mambula SS; Calderwood SK
    J Immunol; 2006 Dec; 177(11):7849-57. PubMed ID: 17114456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of heat shock protein 70 in the thermoresistance of prostate cancer cell line spheroids.
    Khoei S; Goliaei B; Neshasteh-Riz A; Deizadji A
    FEBS Lett; 2004 Mar; 561(1-3):144-8. PubMed ID: 15013766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Anti-proliferative effects of heating on the human prostatic carcinoma cells in culture].
    Nakanoma T; Ueno M; Ohigashi T; Nonaka S; Iida M; Hirata R; Suzuki M; Murai M; Deguchi N
    Hum Cell; 1998 Sep; 11(3):167-74. PubMed ID: 10086278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of active and passive hyperthermia on heat shock protein 70 (HSP70).
    Lovell R; Madden L; McNaughton LR; Carroll S
    Amino Acids; 2008 Feb; 34(2):203-11. PubMed ID: 17928942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased survival of prostate cancer cells in vitro by combined treatment of heat and an antioxidant inhibitor diethyldithiocarbamate (DDC).
    Moriyama-Gonda N; Igawa M; Shiina H; Urakami S; Terashima M
    Exp Toxicol Pathol; 2003 Nov; 55(4):251-6. PubMed ID: 14703770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KNK437, a benzylidene lactam compound, sensitises prostate cancer cells to the apoptotic effect of hyperthermia.
    Sahin E; Sahin M; Sanlioğlu AD; Gümüslü S
    Int J Hyperthermia; 2011; 27(1):63-73. PubMed ID: 21204621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of combined treatment of chemotherapeutics and hyperthermia on survival and the regulation of heat shock proteins in Dunning R3327 prostate carcinoma cells.
    Roigas J; Wallen ES; Loening SA; Moseley PL
    Prostate; 1998 Feb; 34(3):195-202. PubMed ID: 9492848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pifithrin-μ, an inhibitor of heat-shock protein 70, can increase the antitumor effects of hyperthermia against human prostate cancer cells.
    Sekihara K; Harashima N; Tongu M; Tamaki Y; Uchida N; Inomata T; Harada M
    PLoS One; 2013; 8(11):e78772. PubMed ID: 24244355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia induces differentiation without apoptosis in permissive temperatures in human erythroleukaemia cells.
    Sharif-Khatibi L; Kariminia A; Khoei S; Goliaei B
    Int J Hyperthermia; 2007 Dec; 23(8):645-55. PubMed ID: 18097851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells.
    Rylander MN; Stafford RJ; Hazle J; Whitney J; Diller KR
    Int J Hyperthermia; 2011; 27(8):791-801. PubMed ID: 22098363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells.
    Rylander MN; Feng Y; Zimmermann K; Diller KR
    Int J Hyperthermia; 2010; 26(8):748-64. PubMed ID: 20858083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear clusterin accumulation during heat shock response: implications for cell survival and thermo-tolerance induction in immortalized and prostate cancer cells.
    Caccamo AE; Desenzani S; Belloni L; Borghetti AF; Bettuzzi S
    J Cell Physiol; 2006 Apr; 207(1):208-19. PubMed ID: 16331665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of heat shock protein 70 overexpression on apoptosis of K562 cell caused by hyperthermia].
    Wang F; Li B; Yang B; Yu F
    Wei Sheng Yan Jiu; 2001 Mar; 30(2):65-7. PubMed ID: 11321950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 70 kilodalton heat shock protein is an inhibitor of apoptosis in prostate cancer.
    Jones EL; Zhao MJ; Stevenson MA; Calderwood SK
    Int J Hyperthermia; 2004 Dec; 20(8):835-49. PubMed ID: 15764345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the rate of heating: a potential therapeutic approach for achieving synergistic tumour killing in combined hyperthermia and chemotherapy.
    Tang Y; McGoron AJ
    Int J Hyperthermia; 2013; 29(2):145-55. PubMed ID: 23350792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules.
    Evdonin AL; Martynova MG; Bystrova OA; Guzhova IV; Margulis BA; Medvedeva ND
    Eur J Cell Biol; 2006 Jun; 85(6):443-55. PubMed ID: 16584808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro.
    Shui C; Scutt A
    J Bone Miner Res; 2001 Apr; 16(4):731-41. PubMed ID: 11316001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response.
    Korbelik M; Sun J; Cecic I
    Cancer Res; 2005 Feb; 65(3):1018-26. PubMed ID: 15705903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.