BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17079457)

  • 1. A role for mitochondrial dysfunction in perpetuating radiation-induced genomic instability.
    Kim GJ; Fiskum GM; Morgan WF
    Cancer Res; 2006 Nov; 66(21):10377-83. PubMed ID: 17079457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial dysfunction, persistently elevated levels of reactive oxygen species and radiation-induced genomic instability: a review.
    Kim GJ; Chandrasekaran K; Morgan WF
    Mutagenesis; 2006 Nov; 21(6):361-7. PubMed ID: 17065161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry.
    Miller JH; Jin S; Morgan WF; Yang A; Wan Y; Aypar U; Peters JS; Springer DL
    Radiat Res; 2008 Jun; 169(6):700-6. PubMed ID: 18494543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent oxidative stress in chromosomally unstable cells.
    Limoli CL; Giedzinski E; Morgan WF; Swarts SG; Jones GD; Hyun W
    Cancer Res; 2003 Jun; 63(12):3107-11. PubMed ID: 12810636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells.
    Dayal D; Martin SM; Limoli CL; Spitz DR
    Biochem J; 2008 Jul; 413(1):185-91. PubMed ID: 18352860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells.
    Luukkonen J; Liimatainen A; Juutilainen J; Naarala J
    Mutat Res; 2014 Feb; 760():33-41. PubMed ID: 24374227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-lasting genomic instability following arsenite exposure in mammalian cells: the role of reactive oxygen species.
    Sciandrello G; Mauro M; Catanzaro I; Saverini M; Caradonna F; Barbata G
    Environ Mol Mutagen; 2011 Aug; 52(7):562-8. PubMed ID: 21520292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA damage in cells exhibiting radiation-induced genomic instability.
    Keszenman DJ; Kolodiuk L; Baulch JE
    Mutagenesis; 2015 May; 30(3):451-8. PubMed ID: 25711497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation.
    Dayal D; Martin SM; Owens KM; Aykin-Burns N; Zhu Y; Boominathan A; Pain D; Limoli CL; Goswami PC; Domann FE; Spitz DR
    Radiat Res; 2009 Dec; 172(6):737-45. PubMed ID: 19929420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.
    Kukiełka E; Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1994 Mar; 309(2):377-86. PubMed ID: 8135551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionizing radiation-induced oxidative stress, epigenetic changes and genomic instability: the pivotal role of mitochondria.
    Szumiel I
    Int J Radiat Biol; 2015 Jan; 91(1):1-12. PubMed ID: 24937368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased level of oxidative stress in genomically unstable cell clones.
    Dahle J; Kvam E
    J Photochem Photobiol B; 2004 Mar; 74(1):23-8. PubMed ID: 15043843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-induced genomic instability: are epigenetic mechanisms the missing link?
    Aypar U; Morgan WF; Baulch JE
    Int J Radiat Biol; 2011 Feb; 87(2):179-91. PubMed ID: 21039330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA; Song B; Shadel GS; Doetsch PW
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interleukin 8 exhibits a pro-mitogenic and pro-survival role in radiation induced genomically unstable cells.
    Laiakis EC; Baulch JE; Morgan WF
    Mutat Res; 2008 Apr; 640(1-2):74-81. PubMed ID: 18242642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant properties of rare sugar D-allose: Effects on mitochondrial reactive oxygen species production in Neuro2A cells.
    Ishihara Y; Katayama K; Sakabe M; Kitamura M; Aizawa M; Takara M; Itoh K
    J Biosci Bioeng; 2011 Dec; 112(6):638-42. PubMed ID: 21889400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation.
    Yoshida T; Goto S; Kawakatsu M; Urata Y; Li TS
    Free Radic Res; 2012 Feb; 46(2):147-53. PubMed ID: 22126415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and epigenetic changes in chromosomally stable and unstable progeny of irradiated cells.
    Baulch JE; Aypar U; Waters KM; Yang AJ; Morgan WF
    PLoS One; 2014; 9(9):e107722. PubMed ID: 25251398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial reactive oxygen species production by fish muscle mitochondria: Potential role in acute heat-induced oxidative stress.
    Banh S; Wiens L; Sotiri E; Treberg JR
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Jan; 191():99-107. PubMed ID: 26456509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria.
    Liu H; Wang T; Huang K
    Chem Biol Interact; 2009 May; 179(2-3):81-7. PubMed ID: 19121293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.