These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 17079698)
1. Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. Mari S; Gendre D; Pianelli K; Ouerdane L; Lobinski R; Briat JF; Lebrun M; Czernic P J Exp Bot; 2006; 57(15):4111-22. PubMed ID: 17079698 [TBL] [Abstract][Full Text] [Related]
2. TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Gendre D; Czernic P; Conéjéro G; Pianelli K; Briat JF; Lebrun M; Mari S Plant J; 2007 Jan; 49(1):1-15. PubMed ID: 17144893 [TBL] [Abstract][Full Text] [Related]
3. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. Lasat MM; Pence NS; Garvin DF; Ebbs SD; Kochian LV J Exp Bot; 2000 Jan; 51(342):71-9. PubMed ID: 10938797 [TBL] [Abstract][Full Text] [Related]
4. The transition metal chelator nicotianamine is synthesized by filamentous fungi. Trampczynska A; Böttcher C; Clemens S FEBS Lett; 2006 May; 580(13):3173-8. PubMed ID: 16684531 [TBL] [Abstract][Full Text] [Related]
5. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671 [TBL] [Abstract][Full Text] [Related]
6. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Plaza S; Tearall KL; Zhao FJ; Buchner P; McGrath SP; Hawkesford MJ J Exp Bot; 2007; 58(7):1717-28. PubMed ID: 17404382 [TBL] [Abstract][Full Text] [Related]
7. Nicotianamine forms complexes with Zn(II) in vivo. Trampczynska A; Küpper H; Meyer-Klaucke W; Schmidt H; Clemens S Metallomics; 2010 Jan; 2(1):57-66. PubMed ID: 21072375 [TBL] [Abstract][Full Text] [Related]
8. Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Boominathan R; Doran PM Biotechnol Bioeng; 2003 Jul; 83(2):158-67. PubMed ID: 12768621 [TBL] [Abstract][Full Text] [Related]
9. Contrasting effects of nicotianamine synthase knockdown on zinc and nickel tolerance and accumulation in the zinc/cadmium hyperaccumulator Arabidopsis halleri. Cornu JY; Deinlein U; Höreth S; Braun M; Schmidt H; Weber M; Persson DP; Husted S; Schjoerring JK; Clemens S New Phytol; 2015 Apr; 206(2):738-50. PubMed ID: 25545296 [TBL] [Abstract][Full Text] [Related]
10. Relationships of nicotianamine and other amino acids with nickel, zinc and iron in Thlaspi hyperaccumulators. Callahan DL; Kolev SD; O'Hair RAJ; Salt DE; Baker AJM New Phytol; 2007; 176(4):836-848. PubMed ID: 17897323 [TBL] [Abstract][Full Text] [Related]
11. Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Pianelli K; Mari S; Marquès L; Lebrun M; Czernic P Transgenic Res; 2005 Oct; 14(5):739-48. PubMed ID: 16245165 [TBL] [Abstract][Full Text] [Related]
12. Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Tuomainen MH; Nunan N; Lehesranta SJ; Tervahauta AI; Hassinen VH; Schat H; Koistinen KM; Auriola S; McNicol J; Kärenlampi SO Proteomics; 2006 Jun; 6(12):3696-706. PubMed ID: 16691554 [TBL] [Abstract][Full Text] [Related]
13. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry. Rellán-Alvarez R; Abadía J; Alvarez-Fernández A Rapid Commun Mass Spectrom; 2008 May; 22(10):1553-62. PubMed ID: 18421700 [TBL] [Abstract][Full Text] [Related]
14. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. van de Mortel JE; Schat H; Moerland PD; Ver Loren van Themaat E; van der Ent S; Blankestijn H; Ghandilyan A; Tsiatsiani S; Aarts MG Plant Cell Environ; 2008 Mar; 31(3):301-24. PubMed ID: 18088336 [TBL] [Abstract][Full Text] [Related]
15. A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. Bernard C; Roosens N; Czernic P; Lebrun M; Verbruggen N FEBS Lett; 2004 Jul; 569(1-3):140-8. PubMed ID: 15225623 [TBL] [Abstract][Full Text] [Related]
16. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Idris R; Kuffner M; Bodrossy L; Puschenreiter M; Monchy S; Wenzel WW; Sessitsch A Syst Appl Microbiol; 2006 Dec; 29(8):634-44. PubMed ID: 16488569 [TBL] [Abstract][Full Text] [Related]
17. Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. Papoyan A; Piñeros M; Kochian LV New Phytol; 2007; 175(1):51-58. PubMed ID: 17547666 [TBL] [Abstract][Full Text] [Related]
18. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants. Luo J; Zhang H; Zhao FJ; Davison W Environ Sci Technol; 2010 Sep; 44(17):6636-41. PubMed ID: 20681510 [TBL] [Abstract][Full Text] [Related]
19. Cadmium leaching from micro-lysimeters planted with the hyperaccumulator Thlaspi caerulescens: experimental findings and modeling. Ingwersen J; Bücherl B; Neumann G; Streck T J Environ Qual; 2006; 35(6):2055-65. PubMed ID: 17071874 [TBL] [Abstract][Full Text] [Related]
20. The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Kim D; Gustin JL; Lahner B; Persans MW; Baek D; Yun DJ; Salt DE Plant J; 2004 Jul; 39(2):237-51. PubMed ID: 15225288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]