These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1316 related articles for article (PubMed ID: 17080091)

  • 41. Characterization of ApB73, a virulence factor important for colonization of Zea mays by the smut Ustilago maydis.
    Stirnberg A; Djamei A
    Mol Plant Pathol; 2016 Dec; 17(9):1467-1479. PubMed ID: 27279632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence.
    Molina L; Kahmann R
    Plant Cell; 2007 Jul; 19(7):2293-309. PubMed ID: 17616735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gene discovery and transcript analyses in the corn smut pathogen Ustilago maydis: expressed sequence tag and genome sequence comparison.
    Ho EC; Cahill MJ; Saville BJ
    BMC Genomics; 2007 Sep; 8():334. PubMed ID: 17892571
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen.
    Pham CD; Yu Z; Ben Lovely C; Agarwal C; Myers DA; Paul JA; Cooper M; Barati M; Perlin MH
    Fungal Genet Biol; 2012 Jan; 49(1):21-9. PubMed ID: 22146805
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ustilago maydis secondary metabolism-from genomics to biochemistry.
    Bölker M; Basse CW; Schirawski J
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S88-93. PubMed ID: 18585066
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interactions between Fusarium verticillioides, Ustilago maydis, and Zea mays: an endophyte, a pathogen, and their shared plant host.
    Rodriguez Estrada AE; Jonkers W; Kistler HC; May G
    Fungal Genet Biol; 2012 Jul; 49(7):578-87. PubMed ID: 22587948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transcriptome Analysis of a Ustilago maydis ust1 Deletion Mutant Uncovers Involvement of Laccase and Polyketide Synthase Genes in Spore Development.
    Islamovic E; García-Pedrajas MD; Chacko N; Andrews DL; Covert SF; Gold SE
    Mol Plant Microbe Interact; 2015 Jan; 28(1):42-54. PubMed ID: 25226432
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The core effector Cce1 is required for early infection of maize by Ustilago maydis.
    Seitner D; Uhse S; Gallei M; Djamei A
    Mol Plant Pathol; 2018 Oct; 19(10):2277-2287. PubMed ID: 29745456
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetics of morphogenesis and pathogenic development of Ustilago maydis.
    Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE
    Adv Genet; 2007; 57():1-47. PubMed ID: 17352901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of FLP-mediated recombination for the functional analysis of an effector gene family in the biotrophic smut fungus Ustilago maydis.
    Khrunyk Y; Münch K; Schipper K; Lupas AN; Kahmann R
    New Phytol; 2010 Sep; 187(4):957-968. PubMed ID: 20673282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The AGC Ser/Thr kinase Aga1 is essential for appressorium formation and maintenance of the actin cytoskeleton in the smut fungus Ustilago maydis.
    Berndt P; Lanver D; Kahmann R
    Mol Microbiol; 2010 Dec; 78(6):1484-99. PubMed ID: 21143319
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genome editing in Ustilago maydis using the CRISPR-Cas system.
    Schuster M; Schweizer G; Reissmann S; Kahmann R
    Fungal Genet Biol; 2016 Apr; 89():3-9. PubMed ID: 26365384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity.
    Basse CW; Steinberg G
    Mol Plant Pathol; 2004 Mar; 5(2):83-92. PubMed ID: 20565585
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neofunctionalization of the secreted Tin2 effector in the fungal pathogen Ustilago maydis.
    Tanaka S; Schweizer G; Rössel N; Fukada F; Thines M; Kahmann R
    Nat Microbiol; 2019 Feb; 4(2):251-257. PubMed ID: 30510169
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms.
    Martínez-Soto D; Robledo-Briones AM; Estrada-Luna AA; Ruiz-Herrera J
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23733054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of PCR to detect infection of differentially susceptible maize cultivars using Ustilago maydis strains of variable virulence.
    Martínez-Espinoza AD; León-Ramírez CG; Singh N; Ruiz-Herrera J
    Int Microbiol; 2003 Jun; 6(2):117-20. PubMed ID: 12768432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Promoters and their regulation in Ustilago maydis and other phytopathogenic fungi.
    Basse CW; Farfsing JW
    FEMS Microbiol Lett; 2006 Jan; 254(2):208-16. PubMed ID: 16445747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analysis of the proteins involved in the structure and synthesis of the cell wall of Ustilago maydis.
    Ruiz-Herrera J; Ortiz-Castellanos L; Martínez AI; León-Ramírez C; Sentandreu R
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S71-6. PubMed ID: 18508396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The multifunctional beta-oxidation enzyme is required for full symptom development by the biotrophic maize pathogen Ustilago maydis.
    Klose J; Kronstad JW
    Eukaryot Cell; 2006 Dec; 5(12):2047-61. PubMed ID: 16998075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ustilago maydis spermidine synthase is encoded by a chimeric gene, required for morphogenesis, and indispensable for survival in the host.
    Valdés-Santiago L; Cervantes-Chávez JA; Ruiz-Herrera J
    FEMS Yeast Res; 2009 Sep; 9(6):923-35. PubMed ID: 19624748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 66.