BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17080258)

  • 1. Inheritance of organelle DNA markers in a pea cross associated with nuclear-cytoplasmic incompatibility.
    Bogdanova VS
    Theor Appl Genet; 2007 Jan; 114(2):333-9. PubMed ID: 17080258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic analysis of nuclear-cytoplasmic incompatibility in pea associated with cytoplasm of an accession of wild subspecies Pisum sativum subsp. elatius (Bieb.) Schmahl.
    Bogdanova VS; Galieva ER; Kosterin OE
    Theor Appl Genet; 2009 Feb; 118(4):801-9. PubMed ID: 19099285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inheritance and genetic mapping of two nuclear genes involved in nuclear-cytoplasmic incompatibility in peas (Pisum sativum L.).
    Bogdanova VS; Galieva ER; Yadrikhinskiy AK; Kosterin OE
    Theor Appl Genet; 2012 May; 124(8):1503-12. PubMed ID: 22318398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Meiotic abnormalities as expression of nuclear-cytoplasmic incompatibility in crosses of Pisum sativum subspecies].
    Bogdanova VS; Galieva ER
    Genetika; 2009 May; 45(5):711-6. PubMed ID: 19534431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discordant evolution of organellar genomes in peas (Pisum L.).
    Bogdanova VS; Shatskaya NV; Mglinets AV; Kosterin OE; Vasiliev GV
    Mol Phylogenet Evol; 2021 Jul; 160():107136. PubMed ID: 33684529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inheritance of organelle DNA sequences in a citrus-poncirus intergeneric cross.
    Moreira CD; Gmitter FG; Grosser JW; Huang S; Ortega VM; Chase CD
    J Hered; 2002; 93(3):174-8. PubMed ID: 12195032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium.
    Weihe A; Apitz J; Pohlheim F; Salinas-Hartwig A; Börner T
    Mol Genet Genomics; 2009 Dec; 282(6):587-93. PubMed ID: 19787375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wild peas vary in their cross-compatibility with cultivated pea (Pisum sativum subsp. sativum L.) depending on alleles of a nuclear-cytoplasmic incompatibility locus.
    Bogdanova VS; Kosterin OE; Yadrikhinskiy AK
    Theor Appl Genet; 2014 May; 127(5):1163-72. PubMed ID: 24619163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear-cytoplasm conflict in crosses of pea subspecies is controlled by alleles of a nuclear gene on linkage group III.
    Yadrikhinskiy AK; Bogdanova VS
    Dokl Biol Sci; 2011; 441():396-9. PubMed ID: 22227690
    [No Abstract]   [Full Text] [Related]  

  • 10. Allelic Diversity of Acetyl Coenzyme A Carboxylase
    Nováková E; Zablatzká L; Brus J; Nesrstová V; Hanáček P; Kalendar R; Cvrčková F; Majeský Ľ; Smýkal P
    Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exceptional inheritance of plastids via pollen in Nicotiana sylvestris with no detectable paternal mitochondrial DNA in the progeny.
    Thyssen G; Svab Z; Maliga P
    Plant J; 2012 Oct; 72(1):84-8. PubMed ID: 22612300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear-cytoplasmic conflict in pea (Pisum sativum L.) is associated with nuclear and plastidic candidate genes encoding acetyl-CoA carboxylase subunits.
    Bogdanova VS; Zaytseva OO; Mglinets AV; Shatskaya NV; Kosterin OE; Vasiliev GV
    PLoS One; 2015; 10(3):e0119835. PubMed ID: 25789472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryptic divergences in the genus Pisum L. (peas), as revealed by phylogenetic analysis of plastid genomes.
    Bogdanova VS; Mglinets AV; Shatskaya NV; Kosterin OE; Solovyev VI; Vasiliev GV
    Mol Phylogenet Evol; 2018 Dec; 129():280-290. PubMed ID: 30195476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle DNA variation in parental Solanum spp. genotypes and nuclear-cytoplasmic interactions in Solanum tuberosum (+) S. commersonii somatic hybrid-backcross progeny.
    Scotti N; Monti L; Cardi T
    Theor Appl Genet; 2003 Dec; 108(1):87-94. PubMed ID: 12955209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastid inheritance in Pisum sativum L.
    Polans NO; Corriveau JL; Coleman AW
    Curr Genet; 1990 Dec; 18(5):477-80. PubMed ID: 1981861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent potentials for cytoplasmic inheritance within the genus Syringa. A new trait associated with speciogenesis.
    Liu Y; Cui H; Zhang Q; Sodmergen
    Plant Physiol; 2004 Sep; 136(1):2762-70. PubMed ID: 15361583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid Inheritance Revisited: Emerging Role of Organelle DNA Degradation in Angiosperms.
    Sakamoto W; Takami T
    Plant Cell Physiol; 2024 May; 65(4):484-492. PubMed ID: 37702423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.
    Reddy MK; Nair S; Singh BN; Mudgil Y; Tewari KK; Sopory SK
    Gene; 2001 Jan; 263(1-2):179-87. PubMed ID: 11223256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biparental chloroplast inheritance leads to rescue from cytonuclear incompatibility.
    Barnard-Kubow KB; McCoy MA; Galloway LF
    New Phytol; 2017 Feb; 213(3):1466-1476. PubMed ID: 27686577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A case of anomalous chloroplast inheritance in crosses of garden pea involving an accession of wild subspecies.
    Bogdanova VS; Kosterin OE
    Dokl Biol Sci; 2006; 406():44-6. PubMed ID: 16572810
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.