These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17080615)

  • 1. Genotypic difference in canopy diffusive conductance measured by a new remote-sensing method and its association with the difference in rice yield potential.
    Horie T; Matsuura S; Takai T; Kuwasaki K; Ohsumi A; Shiraiwa T
    Plant Cell Environ; 2006 Apr; 29(4):653-60. PubMed ID: 17080615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing canopy photosynthesis in rice can be achieved without a large increase in water use-A model based on free-air CO
    Ikawa H; Chen CP; Sikma M; Yoshimoto M; Sakai H; Tokida T; Usui Y; Nakamura H; Ono K; Maruyama A; Watanabe T; Kuwagata T; Hasegawa T
    Glob Chang Biol; 2018 Mar; 24(3):1321-1341. PubMed ID: 29136323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effects of free-air CO2 enrichment on rice canopy microlimate].
    Luo W; Mayumi Y; Dai J; Zhu J; Han Y; Liu G
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1235-9. PubMed ID: 12557666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.
    Maes WH; Steppe K
    J Exp Bot; 2012 Aug; 63(13):4671-712. PubMed ID: 22922637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Responses of agricultural crops of free-air CO2 enrichment].
    Kimball BA; Zhu J; Cheng L; Kobayashi K; Bindi M
    Ying Yong Sheng Tai Xue Bao; 2002 Oct; 13(10):1323-38. PubMed ID: 12557686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A functional-structural model of rice linking quantitative genetic information with morphological development and physiological processes.
    Xu L; Henke M; Zhu J; Kurth W; Buck-Sorlin G
    Ann Bot; 2011 Apr; 107(5):817-28. PubMed ID: 21247905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.
    Ohsumi A; Hamasaki A; Nakagawa H; Yoshida H; Shiraiwa T; Horie T
    Ann Bot; 2007 Feb; 99(2):265-73. PubMed ID: 17204541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermography to explore plant-environment interactions.
    Costa JM; Grant OM; Chaves MM
    J Exp Bot; 2013 Oct; 64(13):3937-49. PubMed ID: 23599272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic architecture, inter-relationship and selection criteria for yield improvement in rice (Oryza sativa L.).
    Yadav SK; Pandey P; Kumar B; Suresh BG
    Pak J Biol Sci; 2011 May; 14(9):540-5. PubMed ID: 22032083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonia emission from rice leaves in relation to photorespiration and genotypic differences in glutamine synthetase activity.
    Kumagai E; Araki T; Hamaoka N; Ueno O
    Ann Bot; 2011 Nov; 108(7):1381-6. PubMed ID: 21937483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.
    Bunce JA
    Oecologia; 2004 Jun; 140(1):1-10. PubMed ID: 14557864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.
    Burkart S; Manderscheid R; Wittich KP; Löpmeier FJ; Weigel HJ
    Plant Biol (Stuttg); 2011 Mar; 13(2):258-69. PubMed ID: 21309972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using landrace transcription factor alleles to increase yield in modern rice under low input agriculture.
    Fernie AR
    J Plant Physiol; 2021; 258-259():153362. PubMed ID: 33454443
    [No Abstract]   [Full Text] [Related]  

  • 15. Estimation of a New Canopy Structure Parameter for Rice Using Smartphone Photography.
    Yu Z; Ustin SL; Zhang Z; Liu H; Zhang X; Meng X; Cui Y; Guan H
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32707649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon dioxide responsiveness mitigates rice yield loss under high night temperature.
    Bahuguna RN; Chaturvedi AK; Pal M; Viswanathan C; Jagadish SVK; Pareek A
    Plant Physiol; 2022 Jan; 188(1):285-300. PubMed ID: 34643728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do all leaf photosynthesis parameters of rice acclimate to elevated CO
    Cai C; Li G; Yang H; Yang J; Liu H; Struik PC; Luo W; Yin X; Di L; Guo X; Jiang W; Si C; Pan G; Zhu J
    Glob Chang Biol; 2018 Apr; 24(4):1685-1707. PubMed ID: 29076597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis.
    Kasajima I
    BMC Res Notes; 2017 Apr; 10(1):168. PubMed ID: 28446247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameterization of the vertical distribution of leaf area index (LAI) in rice (Oryza sativa L.) using a plant canopy analyzer.
    Hirooka Y; Homma K; Shiraiwa T
    Sci Rep; 2018 Apr; 8(1):6387. PubMed ID: 29686403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum Sowing Date and Genotype Testing for Upland Rice Production in Brazil.
    Ferrari S; Pagliari P; Trettel J
    Sci Rep; 2018 May; 8(1):8227. PubMed ID: 29844344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.