BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17080621)

  • 1. Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus x giganteus.
    Farage PK; Blowers D; Long SP; Baker NR
    Plant Cell Environ; 2006 Apr; 29(4):720-8. PubMed ID: 17080621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus x giganteus.
    Wang D; Portis AR; Moose SP; Long SP
    Plant Physiol; 2008 Sep; 148(1):557-67. PubMed ID: 18539777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection.
    Głowacka K; Jørgensen U; Kjeldsen JB; Kørup K; Spitz I; Sacks EJ; Long SP
    Ann Bot; 2015 May; 115(6):981-90. PubMed ID: 25851133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus × giganteus.
    Spence AK; Boddu J; Wang D; James B; Swaminathan K; Moose SP; Long SP
    J Exp Bot; 2014 Jul; 65(13):3737-47. PubMed ID: 24958895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold tolerance of C4 photosynthesis in Miscanthus x giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes.
    Naidu SL; Moose SP; AL-Shoaibi AK; Raines CA; Long SP
    Plant Physiol; 2003 Jul; 132(3):1688-97. PubMed ID: 12857847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature leaf photosynthesis of a Miscanthus germplasm collection correlates positively to shoot growth rate and specific leaf area.
    Jiao X; Kørup K; Andersen MN; Petersen KK; Prade T; Jeżowski S; Ornatowski S; Górynowicz B; Spitz I; Lærke PE; Jørgensen U
    Ann Bot; 2016 Jun; 117(7):1229-39. PubMed ID: 27192706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates.
    Friesen PC; Peixoto MM; Busch FA; Johnson DC; Sage RF
    J Exp Bot; 2014 Jul; 65(13):3749-58. PubMed ID: 24642848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus x giganteus: an in vivo analysis.
    Naidu SL; Long SP
    Planta; 2004 Nov; 220(1):145-55. PubMed ID: 15258759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.
    Zhu XG; Ort DR; Whitmarsh J; Long SP
    J Exp Bot; 2004 May; 55(400):1167-75. PubMed ID: 15133059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can the cold tolerance of C4 photosynthesis in Miscanthus x giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco?
    Wang D; Naidu SL; Portis AR; Moose SP; Long SP
    J Exp Bot; 2008; 59(7):1779-87. PubMed ID: 18503044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of photosynthetic electron transport to photoinhibition in a temperate deciduous forest canopy: Photosystem II center openness, non-radiative energy dissipation and excess irradiance under field conditions.
    Niinemets U ; Kull O
    Tree Physiol; 2001 Aug; 21(12-13):899-914. PubMed ID: 11498337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity.
    Lawson T; Oxborough K; Morison JI; Baker NR
    Plant Physiol; 2002 Jan; 128(1):52-62. PubMed ID: 11788752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photosynthetic responses to chilling in a chilling-tolerant and chilling-sensitive Miscanthus hybrid.
    Friesen PC; Sage RF
    Plant Cell Environ; 2016 Jul; 39(7):1420-31. PubMed ID: 26714623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chilling-induced physiological, anatomical and biochemical responses in the leaves of Miscanthus × giganteus and maize (Zea mays L.).
    Bilska-Kos A; Panek P; Szulc-Głaz A; Ochodzki P; Cisło A; Zebrowski J
    J Plant Physiol; 2018 Sep; 228():178-188. PubMed ID: 29945073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss.
    Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U
    Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa.
    Lu C; Qiu N; Wang B; Zhang J
    J Exp Bot; 2003 Feb; 54(383):851-60. PubMed ID: 12554728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of carbon assimilation and chlorophyll fluorescence to soybean leaf phosphorus across CO2: Alternative electron sink, nutrient efficiency and critical concentration.
    Singh SK; Reddy VR
    J Photochem Photobiol B; 2015 Oct; 151():276-84. PubMed ID: 26343044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of soil temperature and elevated atmospheric CO2 concentration on gas exchange, in vivo carboxylation and chlorophyll fluorescence in jack pine and white birch seedlings.
    Zhang S; Dang QL
    Tree Physiol; 2005 May; 25(5):523-31. PubMed ID: 15741153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photosynthetic Linear Electron Flow Drives CO
    Shimakawa G; Miyake C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO(2) assimilation is restricted.
    Driever SM; Baker NR
    Plant Cell Environ; 2011 May; 34(5):837-46. PubMed ID: 21332508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.