These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 17080951)

  • 1. Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa.
    Gray DW; Goldstein AH; Lerdau MT
    Plant Cell Environ; 2006 Jul; 29(7):1298-308. PubMed ID: 17080951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field response of Ips paraconfusus, Dendroctonus brevicomis, and their predators to 2-methyl-3-buten-2-ol, a novel alcohol emitted by ponderosa pine.
    Gray DW
    J Chem Ecol; 2002 Aug; 28(8):1583-97. PubMed ID: 12371811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.
    Zeidler J; Lichtenthaler HK
    Planta; 2001 Jun; 213(2):323-6. PubMed ID: 11469599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.
    Harley P; Eller A; Guenther A; Monson RK
    Oecologia; 2014 Sep; 176(1):35-55. PubMed ID: 25015120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants.
    Gray DW; Breneman SR; Topper LA; Sharkey TD
    J Biol Chem; 2011 Jun; 286(23):20582-90. PubMed ID: 21504898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Canopy level emissions of 2-methyl-3-buten-2-ol, monoterpenes, and sesquiterpenes from an experimental Pinus taeda plantation.
    Geron CD; Daly RW; Arnts RR; Guenther AB; Mowry FL
    Sci Total Environ; 2016 Sep; 565():730-741. PubMed ID: 27232720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seasonal trends of biogenic terpene emissions.
    Helmig D; Daly RW; Milford J; Guenther A
    Chemosphere; 2013 Sep; 93(1):35-46. PubMed ID: 23827483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.
    Eggemeyer KD; Awada T; Harvey FE; Wedin DA; Zhou X; Zanner CW
    Tree Physiol; 2009 Feb; 29(2):157-69. PubMed ID: 19203941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.
    Eller AS; Young LL; Trowbridge AM; Monson RK
    Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 13C discriminations of Pinus sylvestris vs. Pinus ponderosa at a dry site in Brandenburg (eastern Germany): 100-year growth comparison.
    Wagner R; Insinna PA; Götz B; Junge S; Boettger T
    Isotopes Environ Health Stud; 2007 Jun; 43(2):117-28. PubMed ID: 17558749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of body condition on consumption of pine needles (Pinus ponderosa) by beef cows.
    Pfister JA; Panter KE; Gardner DR; Cook D; Welch KD
    J Anim Sci; 2008 Dec; 86(12):3608-16. PubMed ID: 18641173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi.
    Keefover-Ring K; Trowbridge A; Mason CJ; Raffa KF
    J Chem Ecol; 2016 Jan; 42(1):1-12. PubMed ID: 26662358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonality of photosynthetic parameters in a multi-specific and vertically complex forest ecosystem in the Sierra Nevada of California.
    Misson L; Tu KP; Boniello RA; Goldstein AH
    Tree Physiol; 2006 Jun; 26(6):729-41. PubMed ID: 16510388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation.
    Shinneman DJ; Means RE; Potter KM; Hipkins VD
    PLoS One; 2016; 11(3):e0151811. PubMed ID: 26985674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Summer precipitation influences the stable oxygen and carbon isotopic composition of tree-ring cellulose in Pinus ponderosa.
    Roden JS; Ehleringer JR
    Tree Physiol; 2007 Apr; 27(4):491-501. PubMed ID: 17241991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-Methyl-3-buten-2-ol (MBO) synthase expression in Nostoc punctiforme leads to over production of phytols.
    Gupta D; Ip T; Summers ML; Basu C
    Bioengineered; 2015; 6(1):33-41. PubMed ID: 25424521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.
    Panek JA
    Tree Physiol; 2004 Mar; 24(3):277-90. PubMed ID: 14704137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in whole-tree water relations during ontogeny of Pinus flexilis and Pinus ponderosa in a high-elevation meadow.
    Fischer DG; Kolb TE; DeWald LE
    Tree Physiol; 2002 Jul; 22(10):675-85. PubMed ID: 12091149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.
    Kerhoulas LP; Kane JM
    Tree Physiol; 2012 Jan; 32(1):14-23. PubMed ID: 22094578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.