These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 1708111)

  • 41. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct measurement of oligonucleotide substrate binding to wild-type and mutant ribozymes from Tetrahymena.
    Pyle AM; McSwiggen JA; Cech TR
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8187-91. PubMed ID: 2236030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Replacement of the conserved G.U with a G-C pair at the cleavage site of the Tetrahymena ribozyme decreases binding, reactivity, and fidelity.
    Pyle AM; Moran S; Strobel SA; Chapman T; Turner DH; Cech TR
    Biochemistry; 1994 Nov; 33(46):13856-63. PubMed ID: 7947794
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site.
    Herschlag D; Cech TR
    Biochemistry; 1990 Nov; 29(44):10172-80. PubMed ID: 2271646
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of binding of mixed ribose-deoxyribose analogues of CUCU to a ribozyme and to GGAGAA by equilibrium dialysis: evidence for ribozyme specific interactions with 2' OH groups.
    Bevilacqua PC; Turner DH
    Biochemistry; 1991 Nov; 30(44):10632-40. PubMed ID: 1931984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA-RNA and RNA-DNA ligation with the sTobRV(+) hammerhead ribozyme.
    Tokumoto Y; Saigo K
    Nucleic Acids Symp Ser; 1992; (27):21-2. PubMed ID: 1283908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigation of the proposed interdomain ribose zipper in hairpin ribozyme cleavage using 2'-modified nucleosides.
    Earnshaw DJ; Hamm ML; Piccirilli JA; Karpeisky A; Beigelman L; Ross BS; Manoharan M; Gait MJ
    Biochemistry; 2000 May; 39(21):6410-21. PubMed ID: 10828955
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutations in a nonconserved sequence of the Tetrahymena ribozyme increase activity and specificity.
    Young B; Herschlag D; Cech TR
    Cell; 1991 Nov; 67(5):1007-19. PubMed ID: 1959129
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of pH dependencies of the Tetrahymena ribozyme reactions with RNA 2'-substituted and phosphorothioate substrates reveals a rate-limiting conformational step.
    Herschlag D; Khosla M
    Biochemistry; 1994 May; 33(17):5291-7. PubMed ID: 8172903
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aminoacyl esterase activity of the Tetrahymena ribozyme.
    Piccirilli JA; McConnell TS; Zaug AJ; Noller HF; Cech TR
    Science; 1992 Jun; 256(5062):1420-4. PubMed ID: 1604316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence.
    Perrotta AT; Been MD
    Biochemistry; 1992 Jan; 31(1):16-21. PubMed ID: 1731868
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates.
    Joseph S; Berzal-Herranz A; Chowrira BM; Butcher SE; Burke JM
    Genes Dev; 1993 Jan; 7(1):130-8. PubMed ID: 7678568
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of magnesium ions and 2'-hydroxyl groups in the VS ribozyme-substrate interaction.
    Tzokov SB; Murray IA; Grasby JA
    J Mol Biol; 2002 Nov; 324(2):215-26. PubMed ID: 12441101
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequence-specific endoribonuclease activity of the Tetrahymena ribozyme: enhanced cleavage of certain oligonucleotide substrates that form mismatched ribozyme-substrate complexes.
    Zaug AJ; Grosshans CA; Cech TR
    Biochemistry; 1988 Dec; 27(25):8924-31. PubMed ID: 3069131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
    Ikawa Y; Tsuda K; Matsumura S; Atsumi S; Inoue T
    Nucleic Acids Res; 2003 Mar; 31(5):1488-96. PubMed ID: 12595557
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Movement of the guide sequence during RNA catalysis by a group I ribozyme.
    Wang JF; Downs WD; Cech TR
    Science; 1993 Apr; 260(5107):504-8. PubMed ID: 7682726
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Alteration of substrate specificity for the endoribonucleolytic cleavage of RNA by the Tetrahymena ribozyme.
    Murphy FL; Cech TR
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9218-22. PubMed ID: 2480597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA-directed construction of structurally complex and active ligase ribozymes through recombination.
    Hayden EJ; Riley CA; Burton AS; Lehman N
    RNA; 2005 Nov; 11(11):1678-87. PubMed ID: 16177133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of binding energy by an RNA enzyme for catalysis by positioning and substrate destabilization.
    Narlikar GJ; Gopalakrishnan V; McConnell TS; Usman N; Herschlag D
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3668-72. PubMed ID: 7731962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.