These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 17081297)
1. Hierarchical amino acid utilization and its influence on fermentation dynamics: rifamycin B fermentation using Amycolatopsis mediterranei S699, a case study. Bapat PM; Das D; Sohoni SV; Wangikar PP Microb Cell Fact; 2006 Nov; 5():32. PubMed ID: 17081297 [TBL] [Abstract][Full Text] [Related]
2. Structured kinetic model to represent the utilization of multiple substrates in complex media during rifamycin B fermentation. Bapat PM; Bhartiya S; Venkatesh KV; Wangikar PP Biotechnol Bioeng; 2006 Mar; 93(4):779-90. PubMed ID: 16302259 [TBL] [Abstract][Full Text] [Related]
3. A cybernetic model to predict the effect of freely available nitrogen substrate on rifamycin B production in complex media. Bapat PM; Sohoni SV; Moses TA; Wangikar PP Appl Microbiol Biotechnol; 2006 Oct; 72(4):662-70. PubMed ID: 16534611 [TBL] [Abstract][Full Text] [Related]
4. Phase shifts in the stoichiometry of rifamycin B fermentation and correlation with the trends in the parameters measured online. Bapat PM; Das D; Dave NN; Wangikar PP J Biotechnol; 2006 Dec; 127(1):115-28. PubMed ID: 16904217 [TBL] [Abstract][Full Text] [Related]
5. Role of extracellular protease in nitrogen substrate management during antibiotic fermentation: a process model and experimental validation. Bapat PM; Sinha A; Wangikar PP Appl Microbiol Biotechnol; 2011 Aug; 91(4):1019-28. PubMed ID: 21573685 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Transcription Factors and Their Involvement in Regulating Rifamycin Production in Singhvi N; Gupta V; Singh P; Prakash O; Bechthold A; Singh Y; Lal R Indian J Microbiol; 2020 Sep; 60(3):310-317. PubMed ID: 32655198 [No Abstract] [Full Text] [Related]
7. Differential mass spectrometry-based proteome analyses unveil major regulatory hubs in rifamycin B production in Amycolatopsis mediterranei. Singhvi N; Singh P; Prakash O; Gupta V; Lal S; Bechthold A; Singh Y; Singh RK; Lal R J Proteomics; 2021 May; 239():104168. PubMed ID: 33662614 [TBL] [Abstract][Full Text] [Related]
8. Enhanced rifamycin SV production by submerged fermentation using Amycolatopsis mediterranei. Nagavalli M; Ponamgi SP; Girijashankar V; Rao LV Appl Microbiol Biotechnol; 2015 Sep; 99(18):7505-13. PubMed ID: 26026938 [TBL] [Abstract][Full Text] [Related]
9. Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Nagavalli M; Ponamgi SP; Girijashankar V; Venkateswar Rao L Lett Appl Microbiol; 2015 Jan; 60(1):44-51. PubMed ID: 25256628 [TBL] [Abstract][Full Text] [Related]
10. Substrate uptake, phosphorus repression, and effect of seed culture on glycopeptide antibiotic production: process model development and experimental validation. Maiti SK; Singh KP; Lantz AE; Bhushan M; Wangikar PP Biotechnol Bioeng; 2010 Jan; 105(1):109-20. PubMed ID: 19685512 [TBL] [Abstract][Full Text] [Related]
11. Improvement of industry-applied rifamycin B-producing strain, Amycolatopsis mediterranei, by rational screening. Jin ZH; Lin JP; Xu ZN; Cen PL J Gen Appl Microbiol; 2002 Dec; 48(6):329-34. PubMed ID: 12682871 [TBL] [Abstract][Full Text] [Related]
12. Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Zhao W; Zhong Y; Yuan H; Wang J; Zheng H; Wang Y; Cen X; Xu F; Bai J; Han X; Lu G; Zhu Y; Shao Z; Yan H; Li C; Peng N; Zhang Z; Zhang Y; Lin W; Fan Y; Qin Z; Hu Y; Zhu B; Wang S; Ding X; Zhao GP Cell Res; 2010 Oct; 20(10):1096-108. PubMed ID: 20567260 [TBL] [Abstract][Full Text] [Related]
13. Cloning and partial characterization of the putative rifamycin biosynthetic gene cluster from the actinomycete Amycolatopsis mediterranei DSM 46095. Kaur H; Cortes J; Leadlay P; Lal R Microbiol Res; 2001; 156(3):239-46. PubMed ID: 11716212 [TBL] [Abstract][Full Text] [Related]
14. Whole genome sequence of the rifamycin B-producing strain Amycolatopsis mediterranei S699. Verma M; Kaur J; Kumar M; Kumari K; Saxena A; Anand S; Nigam A; Ravi V; Raghuvanshi S; Khurana P; Tyagi AK; Khurana JP; Lal R J Bacteriol; 2011 Oct; 193(19):5562-3. PubMed ID: 21914879 [TBL] [Abstract][Full Text] [Related]
15. Expression of the bacterial hemoglobin gene from Vitreoscilla stercoraria increases rifamycin B production in Amycolatopsis mediterranei. Priscila G; Fernández FJ; Absalón AE; Suarez Mdel R; Sainoz M; Barrios-González J; Mejía A J Biosci Bioeng; 2008 Nov; 106(5):493-7. PubMed ID: 19111646 [TBL] [Abstract][Full Text] [Related]
16. Effect of uracil on rifamycin SV production by Amycolatopsis mediterranei MV35R. Murali Krishna PS; Venkateswarlu G; Venkateswar Rao L Lett Appl Microbiol; 2000 Jul; 31(1):73-6. PubMed ID: 10886619 [TBL] [Abstract][Full Text] [Related]
17. Rifamycin W Analogues from Shi Y; Ye F; Song Y; Zhang X; Lu C; Shen Y Biomolecules; 2021 Jun; 11(7):. PubMed ID: 34206314 [TBL] [Abstract][Full Text] [Related]
18. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Xu J; Wan E; Kim CJ; Floss HG; Mahmud T Microbiology (Reading); 2005 Aug; 151(Pt 8):2515-2528. PubMed ID: 16079331 [TBL] [Abstract][Full Text] [Related]
19. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables. Kim JI; Varner JD; Ramkrishna D Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908 [TBL] [Abstract][Full Text] [Related]
20. Optimization of rifamycin B fermentation in shake flasks via a machine-learning-based approach. Bapat PM; Wangikar PP Biotechnol Bioeng; 2004 Apr; 86(2):201-8. PubMed ID: 15052640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]