These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17081424)

  • 21. Intravitreal injection of the heparin analog 5-amino-2-naphthalenesulfonate reduces retinal neovascularization in mice.
    Lange C; Ehlken C; Martin G; Konzok K; Moscoso Del Prado J; Hansen LL; Agostini HT
    Exp Eye Res; 2007 Sep; 85(3):323-7. PubMed ID: 17662276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of pathologic retinal neovascularization by a small peptide derived from human apolipoprotein(a).
    Zhao H; Jin H; Li Q; Gu Q; Zheng Z; Wu H; Ye S; Sun X; Xu X; Ho PC
    Invest Ophthalmol Vis Sci; 2009 Nov; 50(11):5384-95. PubMed ID: 19515999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra Wide Field Fluorescein Angiography Guided Targeted Retinal Photocoagulation (TRP).
    Reddy S; Hu A; Schwartz SD
    Semin Ophthalmol; 2009; 24(1):9-14. PubMed ID: 19241285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of retinal neovascularization by siRNA targeting VEGF(165).
    Xia XB; Xiong SQ; Song WT; Luo J; Wang YK; Zhou RR
    Mol Vis; 2008; 14():1965-73. PubMed ID: 18978955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-lapse imaging of vitreoretinal angiogenesis originating from both quiescent and mature vessels in a novel ex vivo system.
    Murakami T; Suzuma K; Takagi H; Kita M; Ohashi H; Watanabe D; Ojima T; Kurimoto M; Kimura T; Sakamoto A; Unoki N; Yoshimura N
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5529-36. PubMed ID: 17122145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wide-field laser ophthalmoscopy for mice: a novel evaluation system for retinal/choroidal angiogenesis in mice.
    Nakao S; Arita R; Nakama T; Yoshikawa H; Yoshida S; Enaida H; Hafezi-Moghadam A; Matsui T; Ishibashi T
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5288-93. PubMed ID: 23860759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Quantification of oxygen-induced retinopathy in the mouse].
    Liu Y; Liang X; Xu C; Xie S; Kuang W; Liu Z
    Yan Ke Xue Bao; 2006 Jun; 22(2):103-6, 124. PubMed ID: 17162887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimental model of preretinal neovascularization in the rabbit.
    Antoszyk AN; Gottlieb JL; Casey RC; Hatchell DL; Machemer R
    Invest Ophthalmol Vis Sci; 1991 Jan; 32(1):46-52. PubMed ID: 1987106
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [The experimental study of octreotide suppressing retinal neovascularization].
    Meng RH; Yang L; Sun L; Zhang WY
    Zhonghua Yan Ke Za Zhi; 2005 May; 41(5):423-7. PubMed ID: 15938807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Type 3 neovascularization: the expanded spectrum of retinal angiomatous proliferation.
    Freund KB; Ho IV; Barbazetto IA; Koizumi H; Laud K; Ferrara D; Matsumoto Y; Sorenson JA; Yannuzzi L
    Retina; 2008 Feb; 28(2):201-11. PubMed ID: 18301024
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [A modified mouse model of oxygen-induced retinopathy].
    Ding X; Liang X; Xie S; Zhu X; Tang S
    Yan Ke Xue Bao; 2006 Jun; 22(2):98-102. PubMed ID: 17162886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aquaporin-1 independent microvessel proliferation in a neonatal mouse model of oxygen-induced retinopathy.
    Ruiz-Ederra J; Verkman AS
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4802-10. PubMed ID: 17898307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of the 67 kDa laminin receptor (67LR) during retinal development: correlations with angiogenesis.
    McKenna DJ; Simpson DA; Feeney S; Gardiner TA; Boyle C; Nelson J; Stitt AW
    Exp Eye Res; 2001 Jul; 73(1):81-92. PubMed ID: 11428865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comprehensive gene-expression profile in murine oxygen-induced retinopathy.
    Sato T; Kusaka S; Hashida N; Saishin Y; Fujikado T; Tano Y
    Br J Ophthalmol; 2009 Jan; 93(1):96-103. PubMed ID: 18838407
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcitriol is a potent inhibitor of retinal neovascularization.
    Albert DM; Scheef EA; Wang S; Mehraein F; Darjatmoko SR; Sorenson CM; Sheibani N
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2327-34. PubMed ID: 17460298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of triamcinolone acetonide on retinal endothelial cells in a retinopathy of prematurity mouse model.
    Akkoyun I; Yilmaz G; Oto S; Kahraman B; Haberal N; Akova YA
    Acta Ophthalmol Scand; 2007 Nov; 85(7):791-4. PubMed ID: 17488319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retinal angiomatous proliferation: natural history and progression of visual loss.
    Viola F; Massacesi A; Orzalesi N; Ratiglia R; Staurenghi G
    Retina; 2009 Jun; 29(6):732-9. PubMed ID: 19516115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic retinal detachment with secondary retinal macrocyst and peripheral neovascularization.
    Labriola LT; Brant AM; Eller AW
    Semin Ophthalmol; 2009; 24(1):2-4. PubMed ID: 19241283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rifampicin inhibits the retinal neovascularization in vitro and in vivo.
    Chikaraishi Y; Matsunaga N; Shimazawa M; Hara H
    Exp Eye Res; 2008 Jan; 86(1):131-7. PubMed ID: 18031740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Dextran Perfusion and GSI-B4 Isolectin Staining in a Mouse Model of Oxygen-induced Retinopathy.
    Huang S; Liang J; Yam GH; Lu Z; Pang CP; Chen H
    Eye Sci; 2015 Jun; 30(2):70-4. PubMed ID: 26902065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.